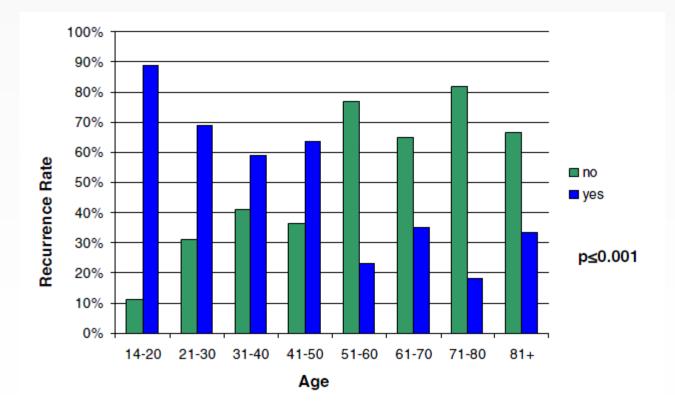

# Anterior Shoulder Instability: indications and surgical techniques for <u>open</u> stabilization




#### Andreas Panagopoulos, MD, Ph.D.

Lecturer in Orthopedics, Medical School, Patras University Sports Medicine & Upper Limb Surgeon, Patras University Hospital ORIGINAL PAPER

# Has the management of shoulder dislocation changed over time?

Byron Chalidis • Nick Sachinis • Christos Dimitriou • Pericles Papadopoulos • Efthimios Samoladas • John Pournaras



Knee Surg Sports Traumatol Arthrosc (2009) 17:1404–1405 DOI 10.1007/s00167-009-0950-6

#### EDITORIAL

#### Primary anterior shoulder dislocation in young athletes: fix them!

Pietro Randelli · Ettore Taverna

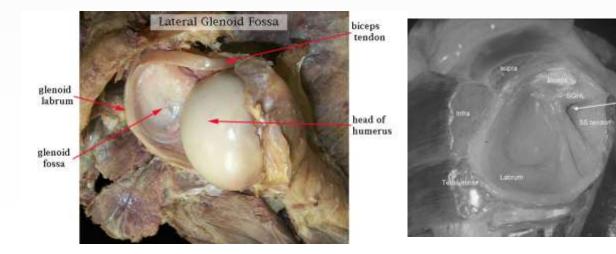
Surgery was proved to reduce the recurrence rate after a first-time anterior shoulder dislocation. The recurrence rate in the group of conservatively treated patients ranged between 60 and 75%. In surgically treated groups, the recurrence was between 11 and 20% [2, 11]. Even in a long-term follow-up [10], surgical stabilization gave better results, with approximately 10% recurrence rate compared to 58% recurrence in the conservative group.

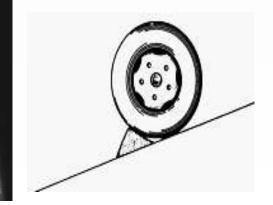
Anatomy & Biomechanics

### **Factors maintaining shoulder stability**

#### **Static Factors**

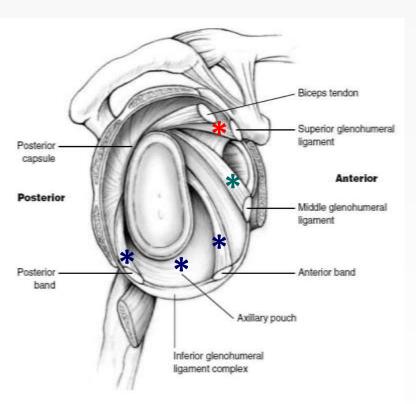
Articular version-conformity Glenoid labrum Capsule and ligaments Adhesion–cohesion & suction cup Negative intraarticular pressure Rotator cuff (static contribution)

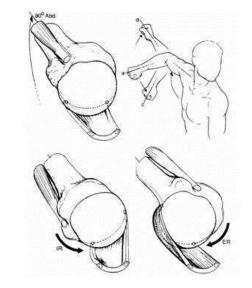

#### **Dynamic Factors**


Rotator cuff Coracoacromial arc Biceps brachii Proprioception

no single factor is responsible for glenohumeral joint stability and no single lesion is responsible for clinical instability

# **Glenoid** labrum


- 1. Anchor point
- 2. Deepens the concavity
- 3. Increase the surface area of contact for the humeral head
- 4. Analogous to a chock-block

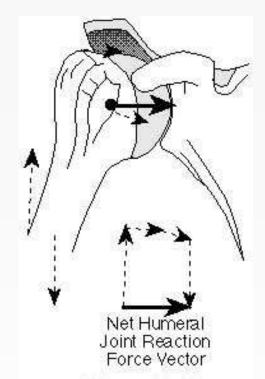




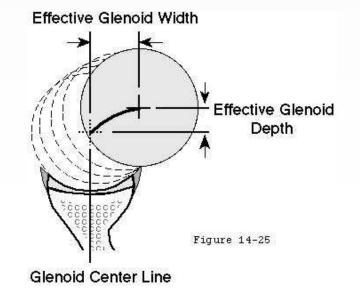

discan burns

# **Capsule/Glenohumeral Ligaments**





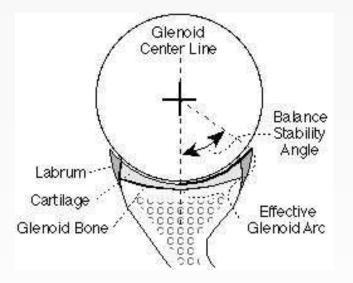

**IGHL complex** acts like a hammock in preventing increased translation of the humeral head on the glenoid.


- abduction moves beneath the humeral head and becomes taut
- internal rotation moves posteriorly and limits posterior translation
- external rotation moves anteriorly and limits anterior translation

# 1<sup>st</sup> law of glenohumeral stability

The GH joint will not dislocate as long as the **net humeral joint reaction force** is directed within the effective glenoid arc



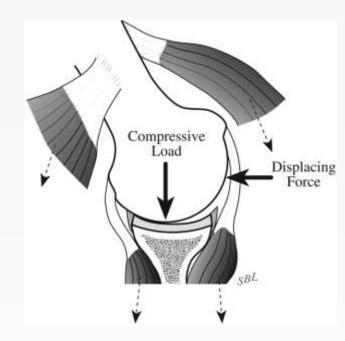

This force is the resultant of all muscular, ligamentous, inertial, gravitational, and other external forces applied to the head

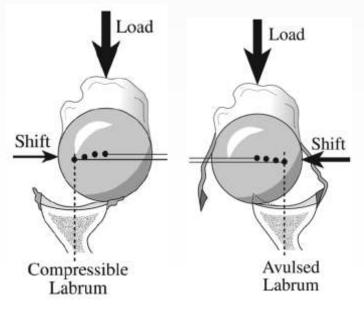


# 2<sup>nd</sup> law of glenohumeral stability

The humeral head will remained centered

- if the glenoid and humeral joint surfaces are congruent and
- if the net humeral joint reaction force is directed within the effective glenoid arc

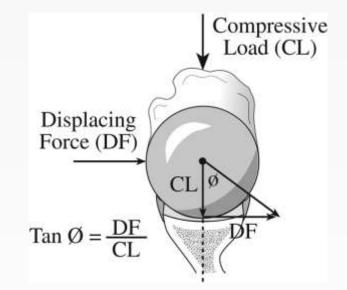


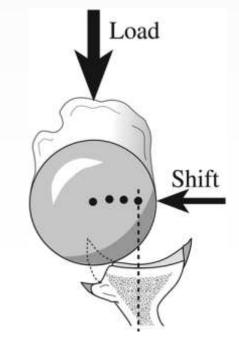


The **"effective glenoid arc"** is the arc of the glenoid available to support the humeral head under the specified loading conditions

# **Balance stability ratio**

Is the force necessary to displace the head from the glenoid divided by the load compressing the head into the concavity.

- Resection of the labrum has been shown to reduce the stability ratio by 20 per cent. (Lippitt, Vanderhooft, Harris et al, 1993)




# **Balance stability angle**

Is the maximal angle between the glenoid center line and the net humeral joint reaction force before the humeral head dislocates from the glenoid

- A 3 mm anterior glenoid defect has been shown to reduce the balance stability angle over 25 per cent. (Matsen, Lippitt, Sidles et al, 1994)





# **Classification** (Matsen)


#### **TUBS or "Torn Loose"**

Traumatic etiology Unidirectional instability Bankart lesion Surgery is required



#### **AMBRI or "Born Loose"**

Atraumatic: minor trauma Multidirectional instability may be present Bilateral: asymptomatic shoulder is also loose Rehabilitation is the treatment of choice Inferior capsular shift: surgery may needed

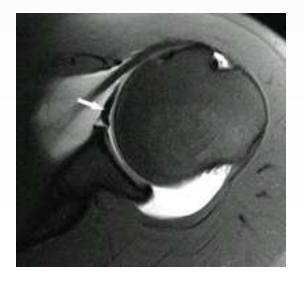


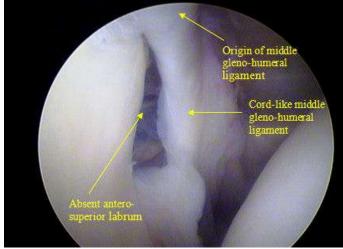
THE JOURNAL OF BONE & JOINT SURGERY + IBIS.ORG VOLUME 88-A + NUMBER 3 + MARCH 2006 PRINCIPLES FOR THE EVALUATION AND MANAGEMENT OF SHOULDER INSTABILITY



# Principles for the Evaluation and Management of Shoulder Instability

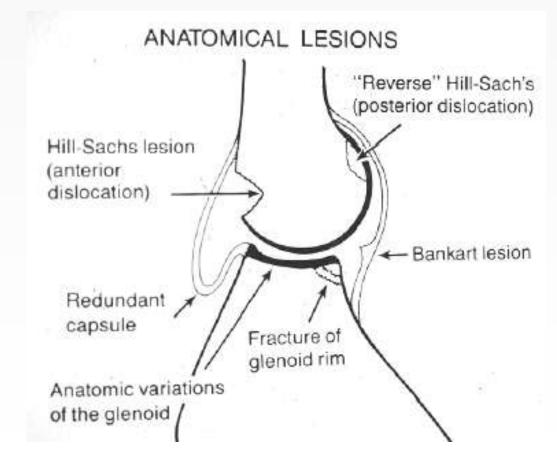
By FREDERICK A. MATSEN III, MD, CAROLINE CHEBLI, MD, AND STEVEN LIPPITT, MD An Instructional Course Lecture, American Academy of Orthopaedic Surgeons


"In the past, the mechanisms providing stability have been categorized as "static" and "dynamic" or as "active" and "passive." We now recognize that the entire system functions as an **integrated whole**"

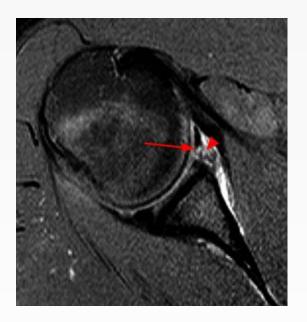

# Pathoanatomy, diagnostic imaging and related lesions

## Normal labral variations (13.5-25%)

- a. A cord-like middle glenohumeral ligament (MGHL)
- **b.** Sublabral foramen in the anterosuperior quadrant of the shoulder.
- c. The **Buford complex** (cord-like MGHL in conjunction with an absent anterosuperior labrum complex



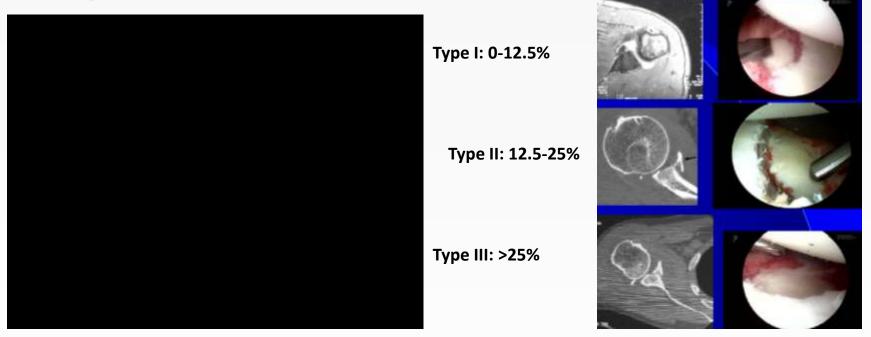



### Pathologic lesions in shoulder instability

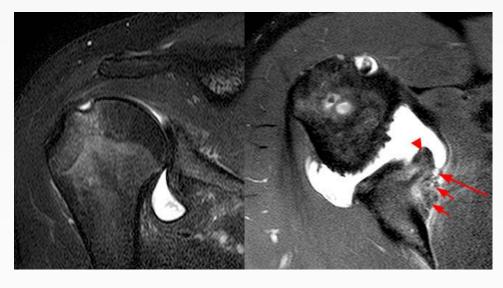
- a. Bankart, bony-Bankart
- **b. PERTHES**
- c. ALPSA
- d. HAGL
- e. GLAD
- f. SLAP
- g. Hill Sacks




### **Bankart lesion**





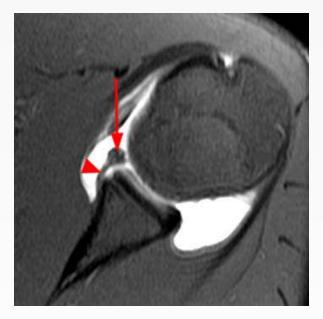

A Bankart lesion is a tear of the anterioinferior glenoid labrum with an associated tear of the anterior scapular periosteum.

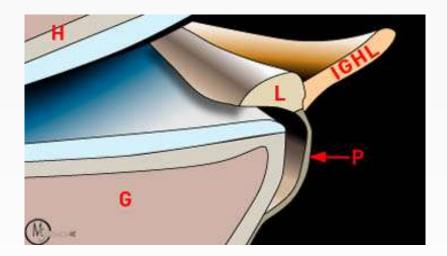
### **Bony - Bankart lesion**



A Bony - Bankart lesion is a tear of the anterioinferior glenoid labrum with an associated tear of the anterior scapular periosteum, with associated fracture of the anterior inferior glenoid rim.

#### **ALPSA** lesion

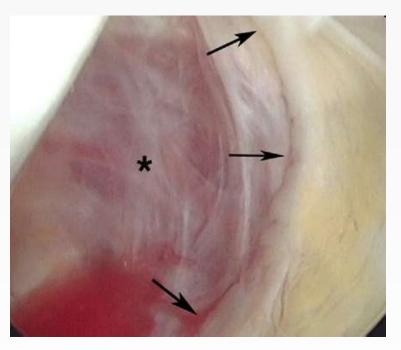



An ALPSA lesion is an anterior labroligamentous periosteal sleeve avulsion. The anterior inferior labrum is torn and the labrum, inferior glenohumeral ligament and intact scapular periosteum are stripped and displaced medially on the glenoid neck.

POLPSA is similar to ALPSA and is associated with posterior dislocation

#### **Perthes lesion**



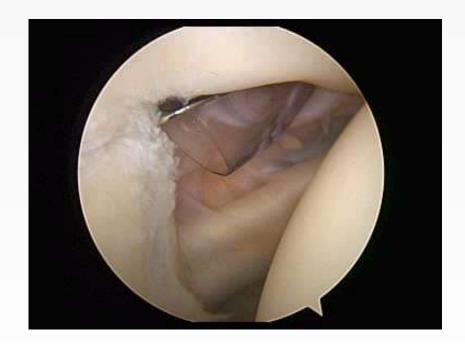



An Perthes lesion is a variant of the Bankart, where the anterioinferior labrum is avulsed from the glenoid and the scapular periosteum remains intact but is stripped medially.

#### **HAGL** lesion

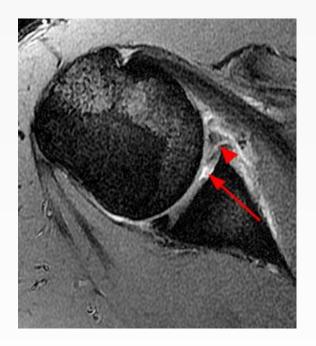


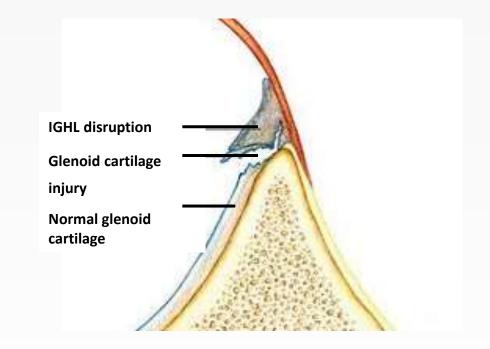



A HAGL lesion is humeral avulsion of the glenohumeral ligament that occurs from shoulder dislocation, with avulsion of the inferior glenohumeral ligament from the anatomic neck of the humerus (J sign).

A **BHAGL** is a bony HAGL, or a HAGL lesion that involves a bone fragment

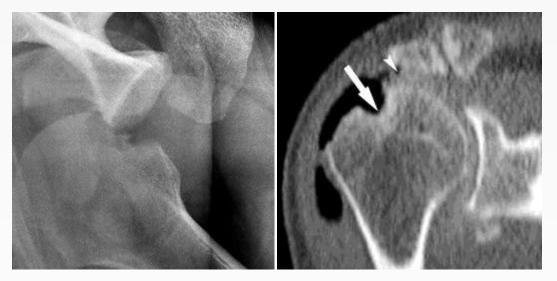
### **SLAP** lesion


#### Type II SLAP






SLAP is an acronym for superior labral tears, that propagate anterior and posterior in reference to the biceps anchor. Originally, SLAP lesions were classified by Snyder et al, based on arthroscopic evaluation


### **GLAD** lesion






The GLAD lesion refers to glenolabral articular disruption, which involves a tear of the anterior inferior labrum with an associated glenoid chondral defect.

### **Hill-Sachs lesion**





< 20% leave alone 20-40% grey zone > 40% need to treat Engaging Burkhart engages in functional position

The Hill-Sachs lesion is a cortical depression in the humeral head. It results from its forceful impaction against the anteroinferior rim of the glenoid when the shoulder is dislocated anteriorly (reverse Hill-Sachs in posterior dislocation).

### Surgical treatment considerations

- (1) Is the problem in the glenohumeral joint?
- (2) Is the problem one of failure to maintain the humeral head in its centered position?
- (3) What mechanical factors are contributing to this instability?
- (4) Are the identified mechanical factors amenable to surgical repair or reconstruction?

This evaluation is based primarily on a carefully elicited history, a physical examination of the stability mechanics, plain radiographs and MRI scan For surgical treatment of glenohumeral instability to be appropriate, the instability must be attributable to **mechanical factors** that can be modified by surgery.

The causes may be deficiencies of the glenoid concavity, deficiencies in the muscles that compress the head into the socket, and/or deficiencies in the capsule and ligaments Widespread acceptance of an **all-arthroscopic** approach to shoulder instability is lacking, partly because of the high failure rate that was reported in early studies.

Stein DA, et al. Arthroscopic stabilization of anterior shoulder instability: A review of the literature. Arthroscopy 2002;18:912-924.

Hobby J, Griffin D, Dunbar M, Boileau P. Is arthroscopic surgery for stabilisation of chronic shoulder instability as effective as open surgery? A systematic review and meta-analysis of 62 studies including 3044 arthroscopic operations. J Bone Joint Surg Br 2007;89:1188-1196.

Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 21, No 6 (June), 2005: pp 652-658

#### Arthroscopic Versus Open Repair for Traumatic Anterior Shoulder Instability: A Meta-analysis

#### Nicholas G. H. Mohtadi, M.D., F.R.C.S.C., Ivan J. Bitar, M.D., Treny M. Sasyniuk, B.P.E., Robert M. Hollinshead, M.D., F.R.C.S.C., and Wade P. Harper, M.B.B.S., F.R.A.C.S.(Orth)

| Study                    | Total No. of<br>Shoulders |      | Recurrence |      | Reoperation* |      | RTA    |      | Traumatic<br>Recurrence |      |
|--------------------------|---------------------------|------|------------|------|--------------|------|--------|------|-------------------------|------|
|                          | Arthro                    | Open | Arthro     | Open | Arthro       | Open | Arthro | Open | Arthro                  | Open |
| Cole et al.47,48         | 37                        | 22   | 6          | 2    | 2            | 1    | 33     | 22   | 6                       | 2    |
| Geiger et al.51          | 16                        | 17   | 7          | 2    | 4            | 0    | 8      | 16   | DNR                     | DNR  |
| Guanche et al.50         | 15                        | 12   | 5          | 1    | 2            | 0    | 11     | 9    | DNR                     | DNR  |
| Jorgensen et al.60       | 21                        | 20   | 2          | 2    | 1            | 0    | 18     | 20   | 1                       | 0    |
| Karlsson et al.57        | 60                        | 48   | 9          | 5    | 4            | 3    | DNR    | DNR  | DNR                     | DNR  |
| Kartus et al.61          | 18                        | 18   | 0          | 1    | 0            | 1    | DNR    | DNR  | DNR                     | DNR  |
| Kim and Ha <sup>56</sup> | 59                        | 30   | 2          | 2    | 2            | 2    | DNR    | DNR  | 2                       | 2    |
| Sperber et al.59         | 43                        | 13   | 15         | 4    | DNR          | DNR  | 26     | 9    | DNR                     | DNR  |
| Steinbeck and Jerosch53  | 30                        | 26   | 7          | 3    | 2            | 1    | DNR    | DNR  | 2                       | 1    |
| Roberts et al.58         | 30                        | 32   | 5          | 2    | 3            | 0    | 25     | 30   | 1                       | 1    |
| Weber <sup>62</sup>      | 43                        | 106  | 7          | 4    | 5            | 3    | 19     | 68   | 6                       | 4    |

TABLE 4. Surgical Outcomes

### Research performed from 1966 to October 31, 2003

Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 26, No 2 (February), 2010: pp 239-248

#### Systematic Review With Video Illustration

### Arthroscopic Stabilization for First-Time Versus Recurrent Shoulder Instability

Robert C. Grumet, M.D., Bernard R. Bach Jr, M.D., and CDR Matthew T. Provencher, M.D., MC, USN

- cohort studies (Level I to II) that evaluated:
- outcomes of patients undergoing arthroscopic stabilization after the first dislocation or multiple recurrent episodes
- 15 studies (5 in the first-time dislocation group and 10 in the recurrent instability group).
- There were no differences in recurrence or complication rate

Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 20, No 5 (May-June), 2004: pp 456-462

### Arthroscopic Versus Open Treatment of Bankart Lesion of the Shoulder: A Prospective Randomized Study

Carlo Fabbriciani, M.D., Giuseppe Milano, M.D., Antonio Demontis, M.D., Salvatore Fadda, M.D., Fabio Ziranu, M.D., and Pier Damiano Mulas, M.D.

#### No recurrence of dislocation in either group at 2 years fup

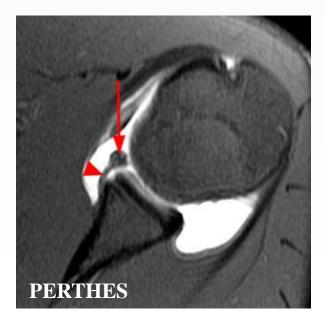
|              | Pain  | Function | ROM        | Strength | Absolute Score | Relative Score (%) | Improvement in Points |
|--------------|-------|----------|------------|----------|----------------|--------------------|-----------------------|
| Arthroscopic |       |          |            |          |                |                    |                       |
| Mean         | 13.5  | 18.9     | 39.6       | 17.5     | 89.5           | 97.1               | 23                    |
| SD           | 2.42  | 1.10     | 0.84       | 1.72     | 4.25           | 3.81               | 5.89                  |
| Open         |       |          | $\bigcirc$ |          |                |                    |                       |
| Mean         | 13.5  | 17.6     | 37.8       | 17.8     | 86.7           | 94.1               | 20.2                  |
| SD           | 2.42  | 2.01     | 1.99       | 1.69     | 6.07           | 7.37               | 8.22                  |
| Р            | 1.000 | .090     | .017       | .698     | .248           | .28                | .39                   |

TABLE 2. Follow-up Results (Mean ± SD) According to Constant Score

#### Systematic Review

#### Long-Term Outcomes After Bankart Shoulder Stabilization

Joshua D. Harris, M.D., Anil K. Gupta, M.D., M.B.A., Nathan A. Mall, M.D., Geoffrey D. Abrams, M.D., Frank M. McCormick, M.D., Brian J. Cole, M.D., M.B.A., Bernard R. Bach Jr., M.D., Anthony A. Romeo, M.D., and Nikhil N. Verma, M.D.


#### Table 7. Comparison of All Surgical Techniques Analyzed

|                                                                      | Arthroscopic<br>Bankart Repair<br>With Suture<br>Anchors | Arthroscopic<br>Bankart Repair<br>With Tacks | Arthroscopic<br>Bankart Repair<br>With Transglenoid<br>Caspari Technique | All-Arthroscopic<br>Bankart<br>Techniques<br>(n = 584) | Open Bankart<br>Repair (n = 731) |
|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------|
| Length of follow-up (yr)                                             | 7.3                                                      | 11.5                                         | 8.4                                                                      | 9.1                                                    | 13.1                             |
| Recurrent dislocation rate (%)                                       | 8.5                                                      | 17                                           | 8                                                                        | 11                                                     | 8                                |
| Recurrent subluxation rate (%)                                       | $\checkmark$                                             | 7                                            | 3                                                                        | 5                                                      | 5                                |
| Timing of recurrent instability (yr)                                 | 2.2                                                      | 3.1                                          | 1.2                                                                      | 2.5                                                    | 3.7                              |
| % of recurrently unstable patients who<br>underwent revision surgery | 57                                                       | 30                                           | 67                                                                       | 41                                                     | 19                               |
| % of recurrent instability due to new trauma<br>% of radiographic OA | 60                                                       | 48                                           | 35                                                                       | 48                                                     | 24                               |
| Overall                                                              | 26                                                       | 56                                           | 19                                                                       | 39                                                     | 33                               |
| Mild                                                                 | 12                                                       | 38                                           | 12                                                                       | 25                                                     | 23                               |
| Moderate                                                             | 12                                                       | 15                                           | 6                                                                        | 12                                                     | 5                                |
| Severe                                                               | 2                                                        | 15<br>3                                      | 1                                                                        | 2                                                      | ~                                |
| Rate of return to sport at preinjury levels                          | 87                                                       | 53                                           | 79                                                                       | 74                                                     | 89                               |
| Final follow-up Rowe score                                           | 84.6                                                     | 92.0                                         | 88.8                                                                     | 87.2                                                   | 85.6                             |
| Final follow-up Constant score                                       | 90.6                                                     | 82.3                                         | 88.1                                                                     | 86.4                                                   | 82.2                             |
| Final follow-up WOSI score                                           | NR                                                       | 419                                          | NR                                                                       | NR                                                     | NR                               |

NR, not reported; OA, osteoarthritis.

- "modern" arthroscopic techniques
- our understanding of the multifactorial etiology of GH instability
- recognition of complex injury patterns with advanced imaging
- increasing learning curve





Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 27, No 10 (October), 2011: pp 1422-1433

#### Current Concepts With Video Illustration

The Rationale for an Arthroscopic Approach to Shoulder Stabilization

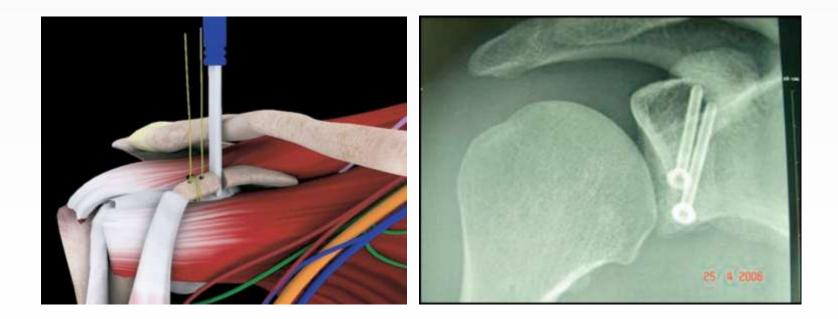
Fotios P. Tjoumakaris, M.D., and James P. Bradley, M.D.

Current arthroscopic techniques have evolved to where arthroscopy should be the preferred method of repair for anterior instability, posterior instability, and MDI, because the results show equal stability, better motion, improved functional outcomes, and most importantly, return to sports Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 23, No 7 (July), 2007: pp 779-784

Concise Review

Arthroscopic Shoulder Stabilization: Is There Ever a Need to Open?

Eric J. Kropf, M.D., Fotios P. Tjoumakaris, M.D., and Jon K. Sekiya, M.D.


Arthroscopic stabilization is clearly contraindicated when a significant pathologic lesion cannot be adequately addressed as a result of the limitations of current techniques or instrumentation.

We believe that **sizable glenohumeral bone defects** remain the only absolute contraindication to an allarthroscopic approach Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 23, No 11 (November), 2007: pp 1242.e1-1242.e5

**Technical Note** 

#### The Arthroscopic Latarjet Procedure for the Treatment of Anterior Shoulder Instability

Laurent Lafosse, M.D., Etienne Lejeune, M.D., Antoine Bouchard, M.D., Carlos Kakuda, M.D., Reuben Gobezie, M.D., and Tony Kochhar, M.Sc., F.R.C.S.(Tr&Orth)

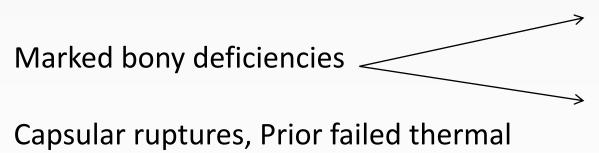


Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 23, No 4 (April), 2007: pp 361-366

#### Patient Perceptions of Open and Arthroscopic Shoulder Surgery

John W. Sperling, M.D., M.B.A., Adam M. Smith, M.D., Robert H. Cofield, M.D., and Sunni Barnes, Ph.D.

|                                              | 20   | Center A    |               | Center B |             |               |  |
|----------------------------------------------|------|-------------|---------------|----------|-------------|---------------|--|
|                                              | Open | Arthroscopy | No Difference | Open     | Arthroscopy | No Difference |  |
| My hospital stay will be shorter             | 0%   | 88%         | 12%           | 3%       | 81%         | 16%           |  |
| My surgery will be less expensive            | 6%   | 68%         | 26%           | 12%      | 52%         | 36%           |  |
| My recovery will be faster                   | 1%   | 91%         | 8%            | 3%       | 87%         | 10%           |  |
| I will have less pain                        | 2%   | 79%         | 19%           | 4%       | 79%         | 17%           |  |
| I will have better motion*                   | 10%  | 44%         | 46%           | 5%       | 68%         | 26%           |  |
| My time away from activities will be shorter | 3%   | 84%         | 13%           | 3%       | 81%         | 16%           |  |
| My long-term outcome will be better*         | 13%  | 42%         | 45%           | 7%       | 60%         | 33%           |  |


TABLE 1. Patient Perceptions of Open and Arthroscopic Surgery

 $*P < .05 \ (\chi^2 \text{ test}).$ 

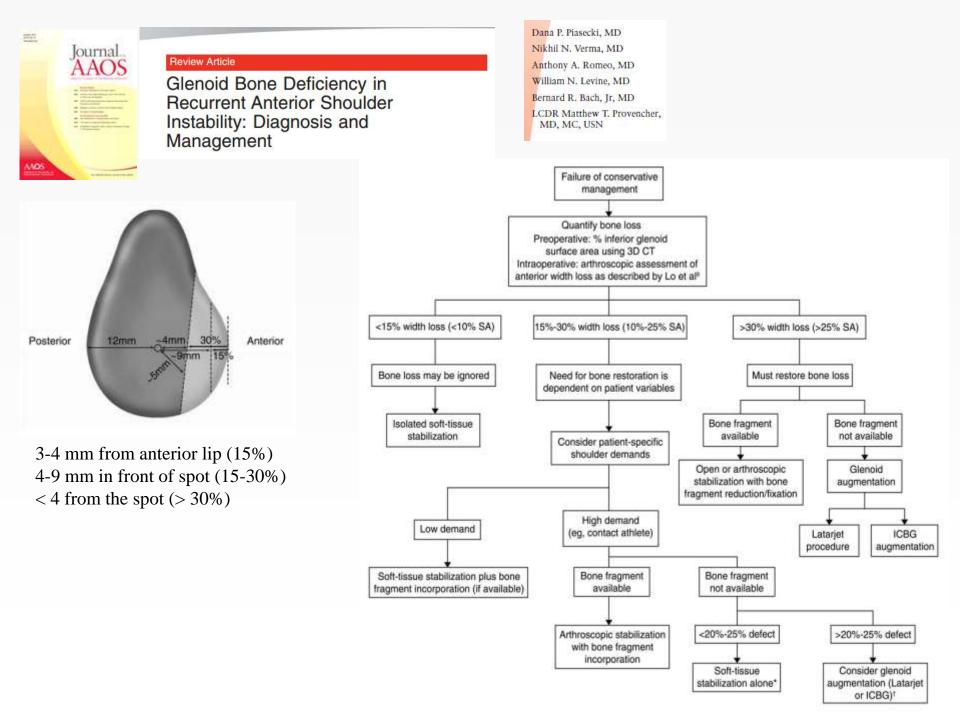
## **Open Operative Treatment for Anterior Shoulder Instability: When and Why?**

Peter J. Millett, Philippe Clavert and Jon J.P. Warner J Bone Joint Surg Am. 87:419-432, 2005. doi:10.2106/JBJS.D.01921

#### Arthroscopic equipment & lack of expertise



Engaging Hill-Sachs defects (≥30% of humeral head) Significant glenoid bone defects (≥25%)


RC lesions?

HAGL lesions?

Collision athletes?

capsulorrhaphy

Revision arthroscopic surgery?

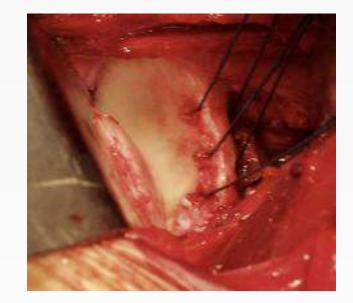


#### **Open Surgical repair: categories**

#### Anatomic

Bankart-Perthes, Rockwood, DuToit staple capsulorrhaphy, inferior capsular shift

#### **Non** -anatomic


| <ul> <li>Subscapularis procedures</li> </ul> | $\longrightarrow$ | Putti-Plat, Magnuson-Stuck                     |
|----------------------------------------------|-------------------|------------------------------------------------|
| <ul> <li>Bone block procedures</li> </ul>    | $\longrightarrow$ | Oudard and Trillat, Eden-Hybinette,<br>J-graft |
| <ul> <li>Coracoid transfer</li> </ul>        | $\longrightarrow$ | Bristow, Latarget-Patte                        |
| <ul> <li>Osteotomy of Humerus</li> </ul>     | >                 | Weber, Cautilli, Joyce and Mackell             |

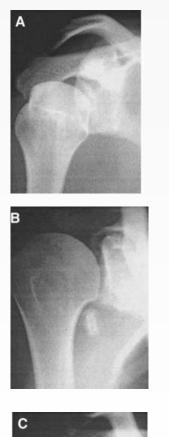
#### **Combined techniques**

**Capsulolabral reconstruction** 

"Bankart repair" (1923, 1939)

- first performed by Perthes (1906)
- shave off bone from the anterior glenoid
- reconstruction of the avulsed capsule and labrum at the glenoid lip, using simple drill holes
- subscapularis, which is carefully divided to expose the capsule, is re-approximate without shortening
- osteotomy of the coracoid




## Bankart repair for recurrent anterior glenohumeral instability: Results at twenty-nine years' follow-up

Stéphane Pelet, MD, Brigitte M. Jolles, MD, and Alain Farron, MD, Lausanne, Switzerland

30 pt for review after 29 years 3 pt (10%) recurrence of dislocation 5 patients symptomatic osteoarthritis mean loss of external rotation 24° mean loss of internal rotation was 19°

global rate of osteoarthritis 40%

J Shoulder Elbow Surg March/April 2006



preop

4 years

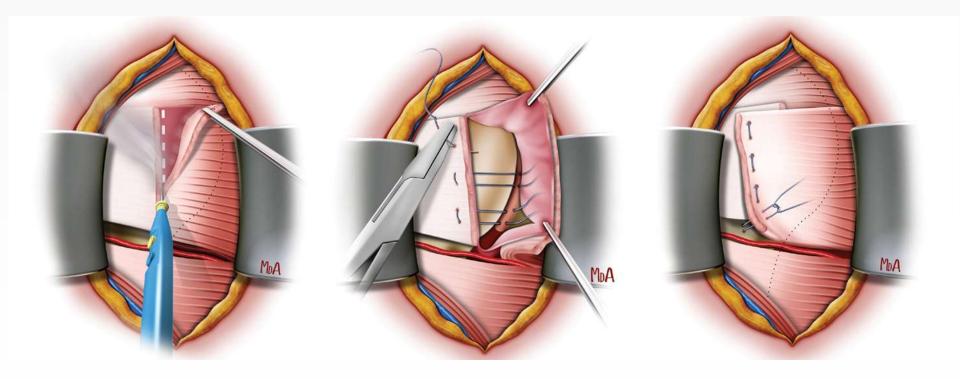
29 years



Copyright 1993 by The Journal of Bone and Joint Surgery, Incorporated

#### Long-Term Results of Staple Capsulorrhaphy for Anterior Instability of the Shoulder<sup>\*†</sup>

BY SHAWN W. O'DRISCOLL, M.D., PH.D., F.R.C.S.(C)4, AND DENNIS C. EVANS, M.D., F.R.C.S.(C)8, TORONTO, ONTARIO, CANADA


Investigation performed at the Upper Extremity Reconstructive Service, Division of Orthopaedic Surgery, St. Michael's Hospital, University of Toronto, Toronto



The subjective and objective results after the stapling procedure were not as good as previous reports have suggested, and we no longer recommend staple capsulorrhaphy for anterior instability of the shoulder, even when it is augmented by a Putti-Platt procedure.

#### **Subscapularis procedures**

#### "Subscapularis shortening Putti-Platt (1925)"



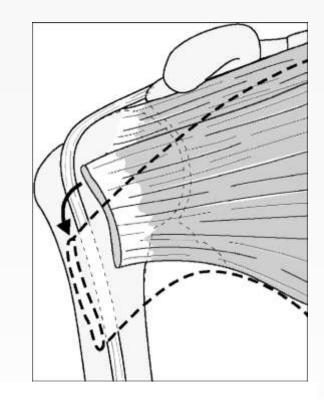
#### Glenohumeral osteoarthrosis after Putti-Platt repair

Henrica M. van der Zwaag, MD, Ronald Brand, PhD, Willem R. Obermann, PhD, and Piet M. Rozing, PhD, *Leiden, The Netherlands* 

(J Shoulder Elbow Surg 1999;8:252-8.)

**Table V** Distribution of shoulders with glenohumeral osteoarthrosis by 3 time intervals to follow up (n – 66)

| Diagnosis    | Length of time until follow-up |            |            |  |
|--------------|--------------------------------|------------|------------|--|
|              | 10 to 20 y                     | 20 to 30 y | 30 to 40 y |  |
| No arthrosis | 20 (74%)                       | 4 (16%)    | 2 (14%)    |  |
| Arthrosis    | 7 (26%)                        | 21 (84%)   | 12 (86%)   |  |
| Mild         | 6                              | 12         | 5          |  |
| Moderate     | 1                              | 7          | 5          |  |
| Severe       | 0                              | 2          | 2          |  |




"The rate of glenohumeral arthrosis is increased in patients who have undergone a Putti-Platt procedure and is positively correlated with the length of time since surgery"

#### Subscapularis procedures

#### "Magnuson – Stack (1940)"

Transfer of the subscapularis tendon from the lesser tuberosity across the bicipital groove to the greater tuberosity



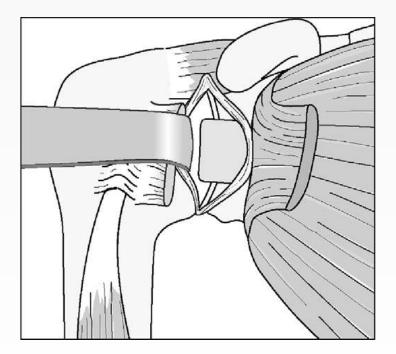
Acta Orthop Scand Suppl. 1997 Oct;275:69-71.

## Recurrent traumatic anterior dislocation of the shoulder. 218 consecutive cases treated by a modified Magnuson-Stack procedure and follow for 2-18 years.

Karadimas JE.

Department of Orthopaedics, University of Athens, Greece.

#### Abstract


Over a period of 30 years (1961-1991), 218 patients with recurrent anterior dislocation of the shoulder were operated on at the Naval Hospital of Greece using a modified Magnuson-Stack method. The modification involved transfer of the subscapularis tendon not only laterally to the bicipital groove, but also 1 cm distally (Karadimas et al. 1980). 210 patients (213 shoulders) were examined after a follow-up of 9 (2-18) years. Results were evaluated according to pain, limitation of motion, muscular power and atrophy. <u>183 patients (87%) had very good results</u>, 21 cases (10%) had good results, while 6 cases (3%) had fair results. Only 3 recurrences (1%) were recorded.

#### **Bone block procedures**

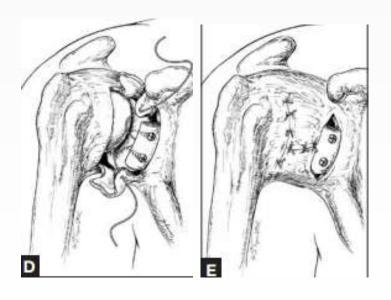
#### "Eden-Hybinette Procedure (1932)"

- creation of a trough through the capsule and into the anteroinferior aspects of the scapula neck.

- a tricortical iliac crest bone graft was then wedged into the trough without fixation



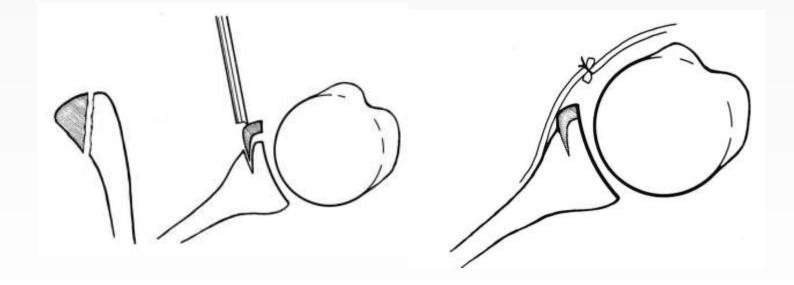

Open Shoulder Stabilization Procedure Using Bone Block Technique for Treatment of Chronic Glenohumeral Instability Associated With Bony Glenoid Deficiency


Michael Khazzam, MD, Steven M. Kane, MD, and Matthew J. Smith, MD



Our 1- to 2-year follow-up showed that the bone block stabilization procedure had successful outcomes and can be recommended for use in patients with recurrent shoulder instability and a significant glenoid bony defect.

Am J Orthop. 2009;38(7):329-335.



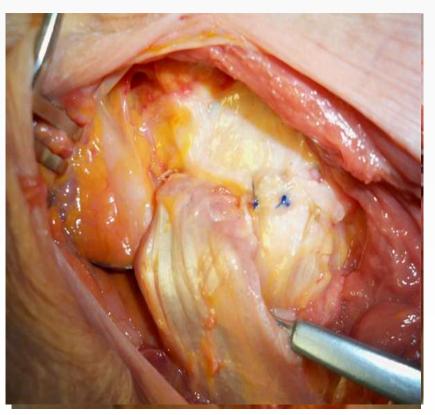



# Reasons for failure after surgical repair of anterior shoulder instability

Mark Tauber, MD,<sup>a</sup> Herbert Resch, MD,<sup>a</sup> Rosemarie Forstner, MD,<sup>b</sup> Michael Raffl, MD,<sup>a</sup> and Josef Schauer, MD,<sup>a</sup> Salzburg, Austria

J Shoulder Elbow Surg May/June 2004




#### J-bone graft procedure

#### **Coracoid transfer**

#### "Bristow - Helfet procedure (1958)"

- coracoid tip is transferred to the anteroinferior glenoid neck and serves as a bone block

 the transferred conjoined tendon acts as a strong dynamic buttress across the anterior and inferior aspects of the joint



#### The Modified Bristow Procedure for Anterior Shoulder Instability

#### 26-Year Outcomes in Naval Academy Midshipmen

LCDR David T. Schroder,\* MD, MC USNR, LCDR Matthew T. Provencher, MD, MC USN, CDR Timothy S. Mologne, MD, MC USN (ret), CDR Michael P. Muldoon, MD, MC USN (ret), and CAPT Jay S. Cox, MD, MC USN (ret) From the Division of Orthopaedic Shoulder and Knee Surgery, Department of Orthopaedic Surgery, Naval Medical Center San Diego, San Diego, California



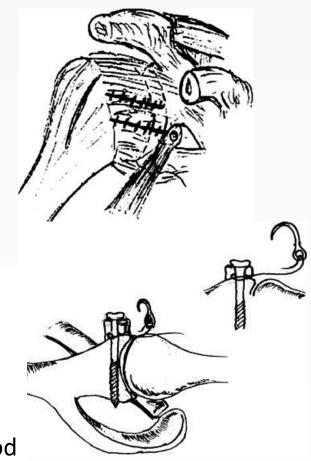
Conclusion: This study represents the longest follow-up in the literature of the modified Bristow procedure. The authors have shown nearly **70% good and excellent results** and recurrent instability comparable with other long-term follow-up studies of open instability procedures.



Journal of Shoulder and Elbow Surgery

Volume 21, Issue 5, May 2012, Pages 647-660




#### Shoulder

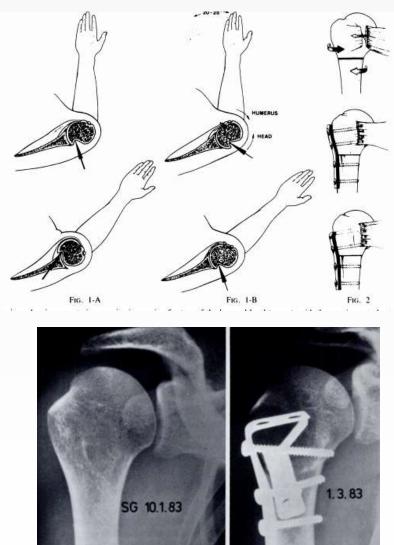
The effect of capsular repair, bone block healing, and position on the results of the Bristow-Latarjet procedure (study III): long-term follow-up in 319 shoulders

Lennart Hovelius, MD, PhD<sup>a, b,</sup> , Björn Sandström, MD<sup>b</sup>, Anders Olofsson, MD<sup>b</sup>, Olle Svensson, MD, PhD<sup>a</sup>, Hans Rahme, MD, PhD<sup>c</sup>

- 319 shoulders, 3 (1%) revision surgery
- bony union in 83%
- position too medial to the glenoid rim (1 cm) was associated with recurrence.

The open Bristow-Latarjet procedure is a good alternative for revision surgery and for shoulders with a bony Bankart lesion. When a **horizontal capsular shift** was added to the repair, the results with respect to recurrences and subjective assessment were improved




#### **Humerus osteotomy**

Rotational humeral osteotomy for recurrent anterior dislocation of the shoulder associated with a large Hill-Sachs lesion

BG Weber, LA Simpson, F Hardegger and S Gallen J Bone Joint Surg Am. 1984;66:1443-1450.

- subcapital osteotomy
- medial rotation of the head (25<sup>0</sup>)
- shortening of the subscapulanis tendon and capsule anteriorly

average loss of external rotation >5 degrees, without noticeable diminution of power or function in most patients. The results as graded by a standard rating scale were good to excellent in 90 per cent



Does Weber's rotation osteotomy induce degenerative joint disease at the shoulder in the long term?

Matthias P. Flury, MD, Joerg Goldhahn, MD, Patrick Holzmann, MD, and Beat R. Simmen, MD, Lengghalde, Switzerland

Only 3 patients (9%) did not show signs of degeneration.

fincreased internal rotation of the head more severe degenerative disease

"We therefore recommend this osteotomy only as a salvage procedure whereby the internal rotation of the humeral head should not exceed 20 degrees"



J Shoulder Elbow Surg November/December 2007

#### **Combination of capsulolabrar techniques**

#### Repair of Bankart lesion

#### Inferior capsular shift

Neer CS, Foster CR : Inferior capsular shift for involuntary inferior and multidirectional instability of the shoulder. JBJS Am 1980

#### Reinforced cruciate repair

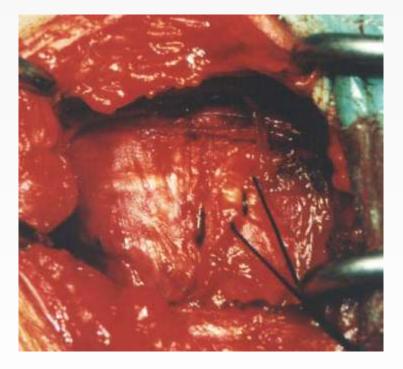
*Neer CS, Fithian TE: Reinforced cruciate repair for anterior dislocation of the shoulder. Orthop Trans 1985* 

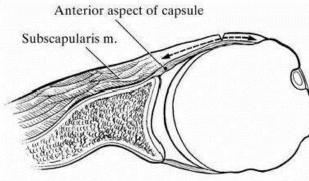
#### 160 pt at Patras University Hospital (5% recurrences)

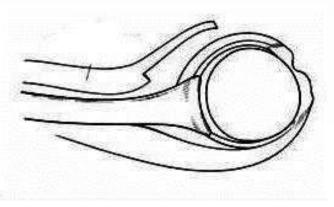
## **Surgical steps**

## beach chair position

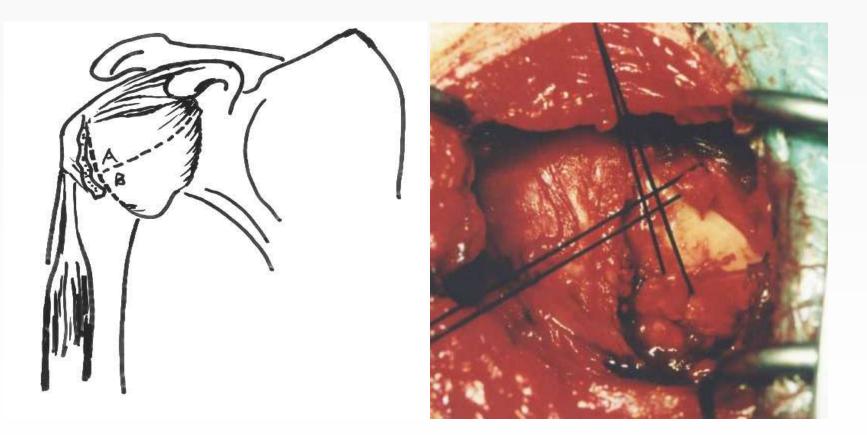



#### axillary approach (Ryan-Lesley)


### Direction of the instability (under anesthesia)

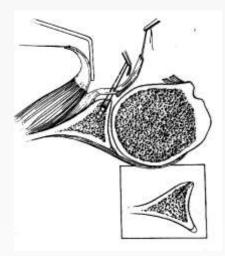


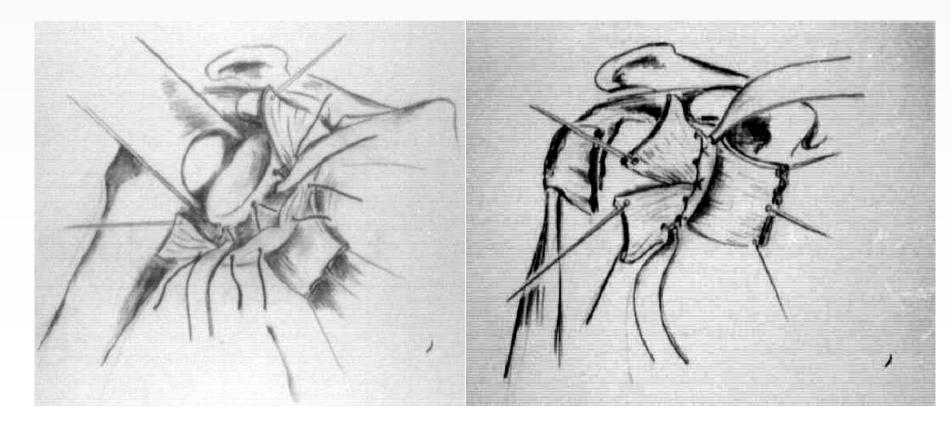

#### Subscapularis cut (leave 1/3 attached to the capsule)



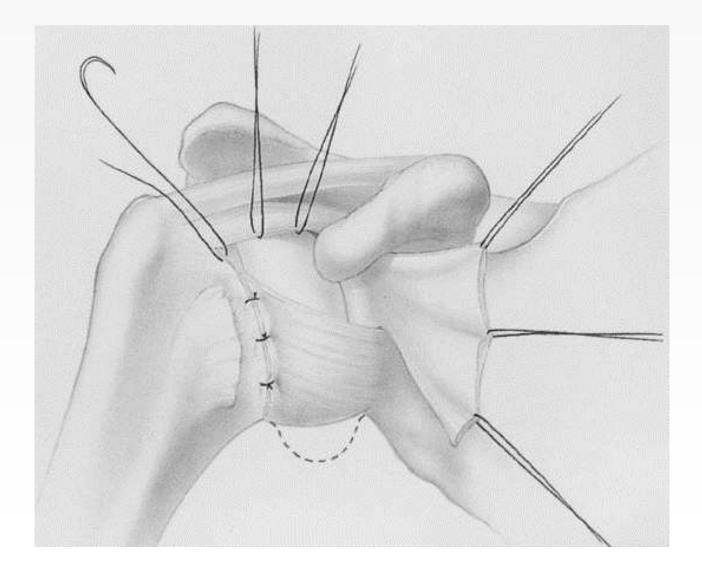




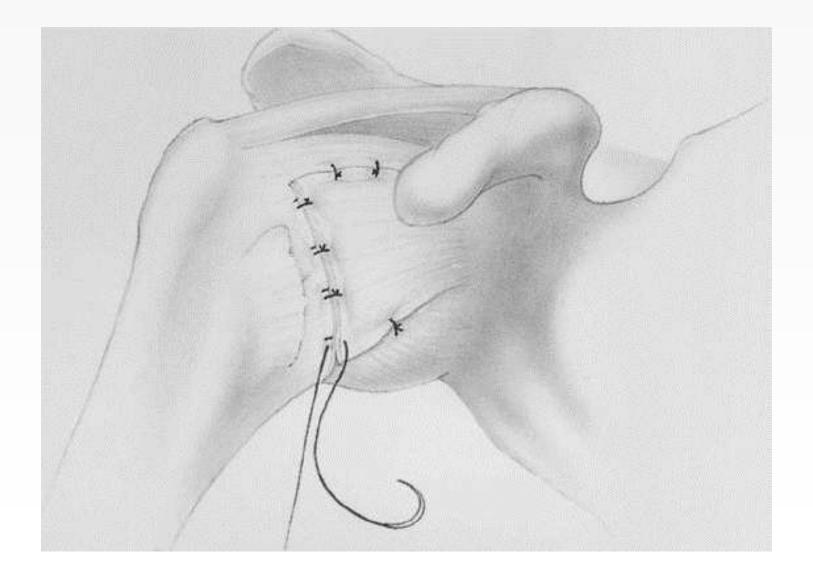





#### The capsule is opened in "T-shape"




#### **Repair of capsulolabral detachment**

Three holes with drill 2,5mm (3:00, 5:00, 7:00) Glenocapsular reattachment with ethibon No 2 (Mitec G II)



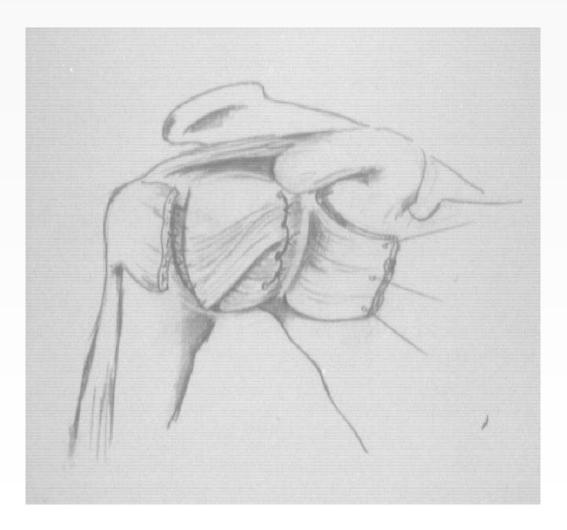



### Inferior capsular shift

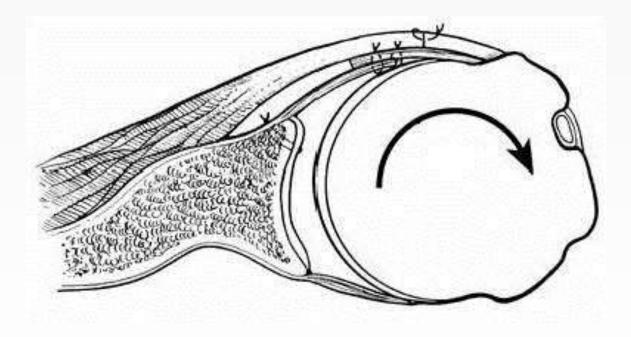


### Cruciate repair



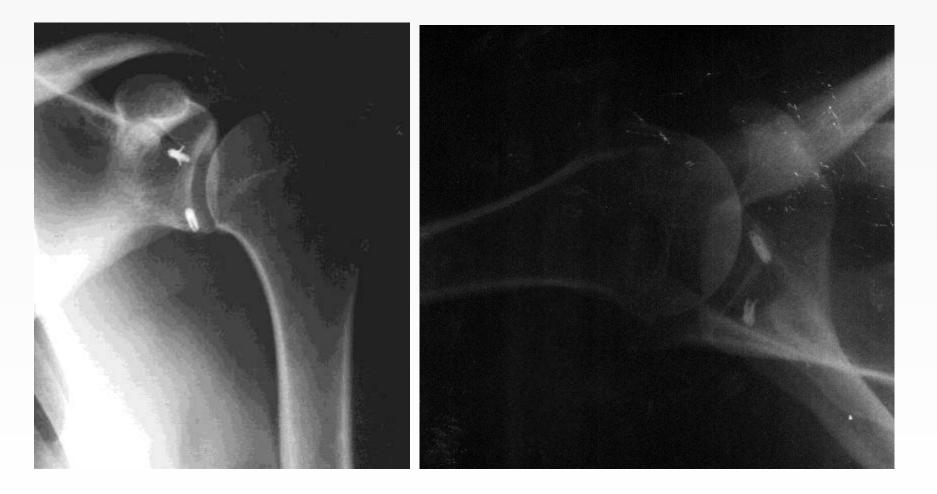

#### ...to reinforce anterior capsule

#### arm position


Elbow flexion 90°

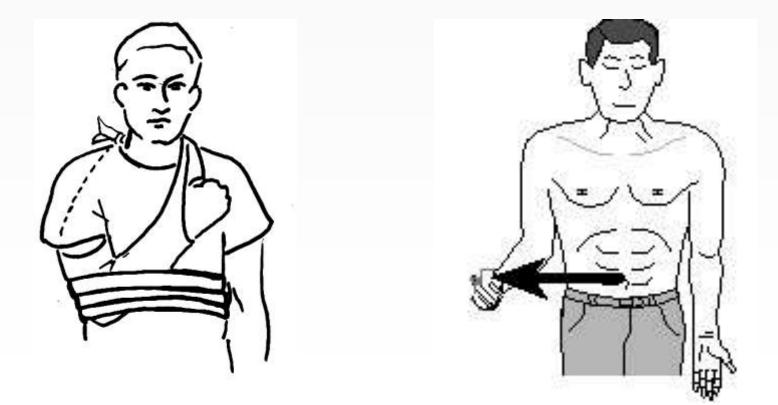
Shoulder lift

External rotation 10°

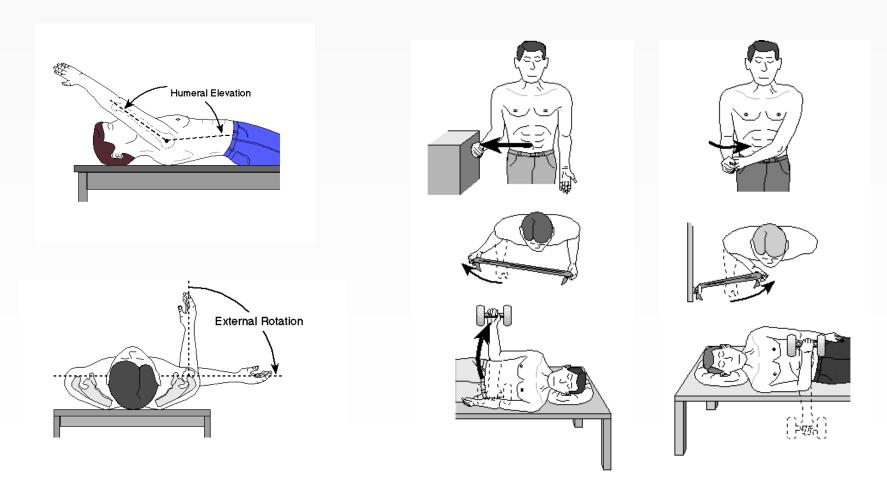



# Subscapularis is reattached in its anatomical insertion (without shortening)





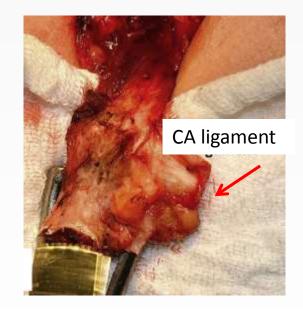

No functional limitation of external rotation




## **POST OPERATIVELY**

First 48 hours : Velpeau Till 4th week : controlled ext rotation gradually to neutral position



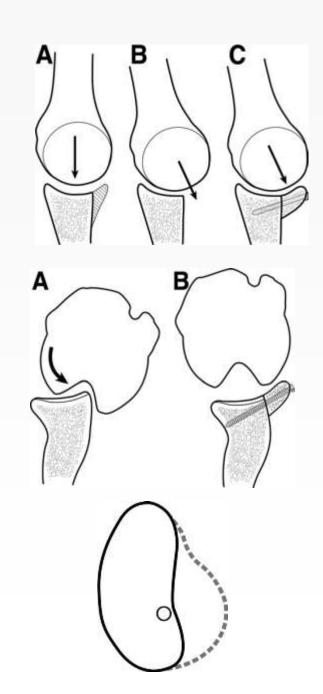

# 4th to 6th week : active After 6th week : assisted immobilization muscular strengthening



#### **Coracoid transfer**

#### "Latarzet procedure (1958)"

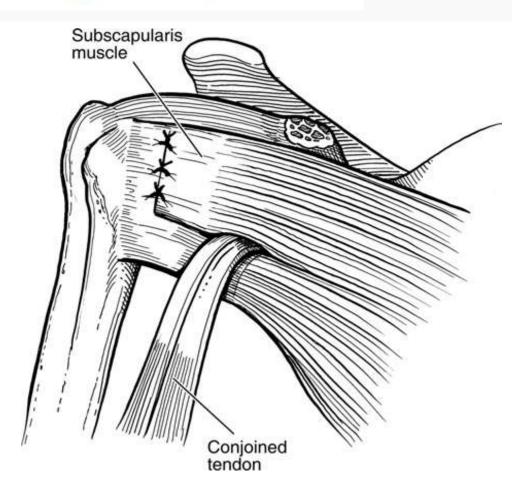
- the **gold standard** treatment for anterior glenohumeral instability in the presence of glenoid bone loss
- 3 stabilizing mechanisms
- coracoid process acts as a bony extension
- conjoint tendon act as a soft tissue sling preventing anterior subluxation
- the capsule can be repaired to the stump of CA ligament, thus providing a new, strong, inferior glenohumeral ligament




#### **Coracoid transfer**

#### "Latarzet procedure (1958)"

The Latarjet reconstruction extends the glenoid articular arc so that


- 1. off-axis loads are resisted by bone rather than soft tissue
- the humerus cannot externally rotate enough to cause engagement of the Hill-Sachs lesion over the front of the graft.



#### Results of Modified Latarjet Reconstruction in Patients With Anteroinferior Instability and Significant Bone Loss

Stephen S. Burkhart, M.D., Joe F. De Beer, M.D., Johannes R. H. Barth, M.D.,

Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 23, No 10 (October), 2007: pp 1033-1041





JOURNAL OF SHOULDER AND ELBOW SURGERY

**REVIEW ARTICLE** 

## Complications associated with open coracoid transfer procedures for shoulder instability

Usman Butt, MRCS<sup>a</sup>, Charalambos P. Charalambous, MSc, MD, FRCS (Tr & Orth)<sup>b,\*</sup>

# **30 studies** describing the results of **1658** coracoid transfer procedures

- reoperation 4.9%
- recurrent instability 6.0%
- hardware complications 6.5%
- graft nonunion, fibrous union, or graft migration **10.1%**
- graft osteolysis 1.6%
- nerve palsy 1.2%
- infection occurred in 1.5%

#### J Shoulder Elbow Surg (2011) 20, 989-995

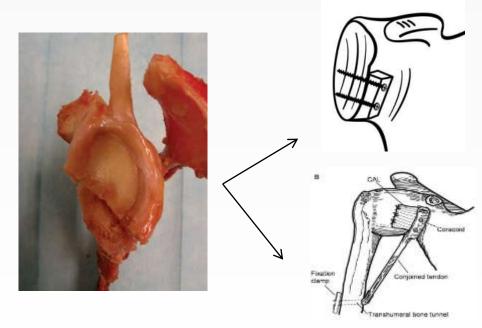


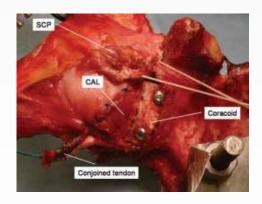
JOURNAL OF SHOULDER AND ELBOW SURGERY

#### Coracoid graft osteolysis after the Latarjet procedure for anteroinferior shoulder instability: a computed tomography scan study of twenty-six patients

Giovanni Di Giacomo, MD<sup>a</sup>, Alberto Costantini, MD<sup>a</sup>, Nicola de Gasperis, MD<sup>a</sup>,\*, Andrea De Vita, MD<sup>a</sup>, Bernard K.H. Lin, MD<sup>a</sup>, Marco Francone, MD<sup>b</sup>, Mario A. Rojas Beccaglia, MD<sup>a</sup>, Marco Mastantuono, MD<sup>b</sup>

The most relevant osteolysis was represented by the superficial part of the **proximal** coracoid


No patient with recurrent shoulder dislocation. This reinforced the hypothesis that the coracoid bone graft is not the principal factor in the Latarjet procedure for anteroinferior shoulder stabilization.




#### Open Shoulder Repair of Osseous Glenoid Defects

#### Biomechanical Effectiveness of the Latarjet Procedure Versus a Contoured Structural Bone Graft

Mathias Wellmann,\*<sup>†</sup> MD, Wolf Petersen,<sup>‡</sup> MD, Thore Zantop,<sup>‡</sup> MD, Mirco Herbort,<sup>‡</sup> MD, Philipp Kobbe,<sup>§</sup> MD, Michael J. Raschke,<sup>‡</sup> MD, and Christof Hurschler,<sup>†</sup> PhD





Biomechanically, the Latarjet procedure outperforms the bone graft in reducing translation in anteroinferior glenoid bone defects.

The advantage of the Latarjet procedure is particularly evident at  $60^{\circ}$  of glenohumeral abduction.

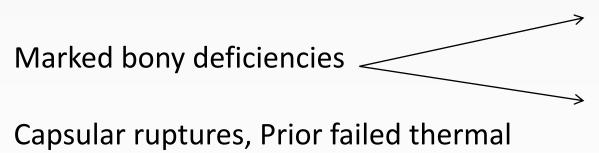
# The American Journal of Sports Medicine

J Shoulder Elbow Surg 2007

Revision anterior capsular shoulder stabilization using hamstring tendon autograft and tibialis tendon allograft reinforcement: Minimum two-year follow-up

Jess G. Alcid, MD,<sup>a</sup> Scott E. Powell, MD,<sup>b</sup> and James E. Tibone, MD,<sup>c,d</sup> Toms River, NJ, and Panorama City and Los Angeles, CA

15 patients
2 years fup
ASES score 73
no postoperative dislocations
decreased range of motion
2 patients TSA






## **Open Operative Treatment for Anterior Shoulder Instability: When and Why?**

Peter J. Millett, Philippe Clavert and Jon J.P. Warner J Bone Joint Surg Am. 87:419-432, 2005. doi:10.2106/JBJS.D.01921

#### Arthroscopic equipment & lack of expertise



Engaging Hill-Sachs defects (≥30% of humeral head) Significant glenoid bone defects (≥25%)

RC lesions?

HAGL lesions?

Collision athletes?

capsulorrhaphy

Revision arthroscopic surgery?

#### **Personal preference**

#### Always start with diagnostic arthroscopy

- (1) First time dislocation, young pt = Arthroscopic Bankart
- (2) Recurrent traumatic instability ± ALPSA = Arthroscopic Bankart repair + inferior capsular shift, [OPEN in collision athletes + cruciate reinforcement, open in HAGL lesion]
- (3) First time dislocation/small bone loss = Arthroscopic Bankart + incorporation
- (4) First time dislocation/> osseous fragment = open reconstruction + fixation
- (5) Recurrent traumatic instability/significant bone loss = Latarzet procedure
- (6) Revision arthroscopy + bone loss = Latarzet procedure
- (7) Instability in elderly patients ±RC injury = Bristow procedure