
Extended Limb Lengthening in Dwarfs and Cosmetic Lengthening for Short Stature Advances and Future Perspectives of Ilizarov

Andreas Panagopoulos MD, PhD Upper Limb and Sports Medicine Surgeon Assistant Professor, University Hospital of Patras

Outline

- Features of Achondroplasia
- > Techniques of limb lengthening in ACH
- Complications of lengthening in ACH
- Cosmetic LL for short stature
- Innovations and the future of DI

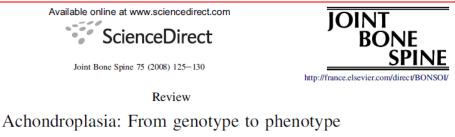
Achondroplasia

most common form of dwarfism incidence 1/15,000-30,000 live births fully penetrant autosomal dominant

disturbance in endochondral bone formation

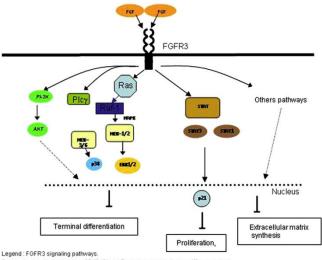
short stature

neurological and skeletal complications


normal intelligence

Genetics

Available online at www.sciencedirect.com ScienceDirect


Joint Bone Spine 75 (2008) 125-130

Pascal Richette^{a,*}, Thomas Bardin^a, Chantal Stheneur^b

Review

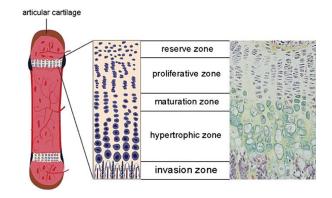
- The gene of ACH was assigned in 1994
- Tyrosine-kinase domain activation loop of FGFR3
- in 98% substitution of arginine for a glycine \geq residue at position 380 (Gly380Arg)
- other mutations (Gly375Cys, Gly346Glu and Ser279Cyst) have been exceptionally reported

Four main signaling pathways : STAT (Signal Transducer and Activator of Transcription), MAPK (Mitogen Activated Protein Kinase), PLCy (Phospholipase C gamma)

PI3K-AKT (Phosphatidylinositol phosphatase-3-kinase-serine/threonine kinase) probably other pathways which control chondrocyte proliferation and differentiation

Expression

est Practice & Research Clinical Rheumatology Vol. 22, No. 1, pp. 3–18, 2008 doi:10.1016/j.berh.2007.12.008 available online at http://www.sciencedirect.com


Achondroplasia

Geneviève Baujat MD

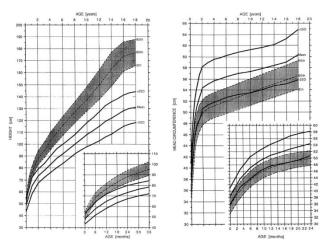
Laurence Legeai-Mallet PhD

Georges Finidori MD

- The phenotype observed in achondroplasia is the consequence of severe disturbances in endochondral bone growth induced by abnormal activity of FGFR3.
- Delayed maturation of chondrocytes in the hypertrophic zone (growth plate)
- Reduced longitudinal growth of bone

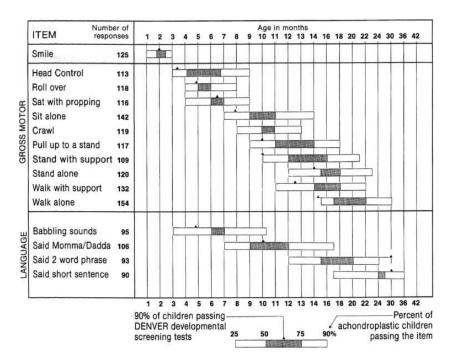
Phenotype

- disproportionate short stature
- rhizomelic shortening,
- trident hands,
- enlarged head, depressed nasal bridge & prominent forehead
- generalized joint laxity and mild hypotonia
- Medium adult heights are 131 ± 5.6 cm for males and 124 ± 5.9 cm for females


AMERICAN ACADEMY OF PEDIATRICS

CLINICAL REPORT Guidance for the Clinician in Rendering Pediatric Care

Tracy L. Trotter, MD; Judith G. Hall, OC, MD; and the Committee on Genetics


Health Supervision for Children With Achondroplasia

- delayed motor milestones
- recurrent middle-ear dysfunction
- hydrocephalus, foramen magnum stenosis
- craniocervical junction compression
- dental crowding
- > upper-airway obstruction,
- psychosocial problems
- excessive weight gain

Height

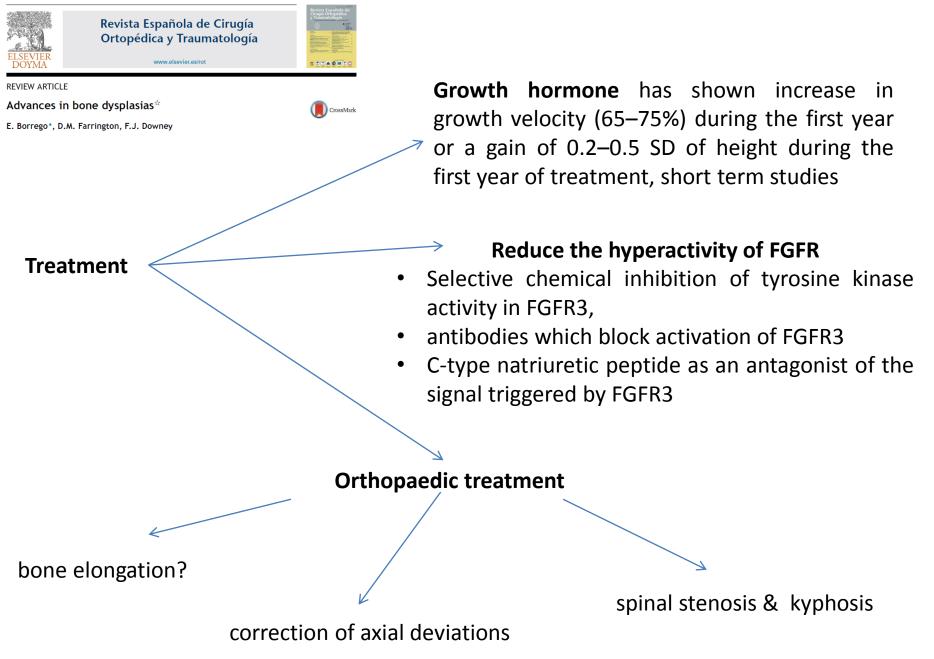
Head circumference

Orthopaedic manifestations

- atlantoaxial instability
- thoracolumbar kyphosis (infancy),
 (10% of may progress)
- excess lumbar lordosis (childhood) and prominent buttocks
- spinal stenosis (17%) and disc prolapse
 (adult life)
- hip flexion, contractures and limitation of elbow extension, genu varum, internal tibial torsion and varus deviation of the ankle

Life expectancy & QoL

Children often have lower IQ


verall and age-specific mortality rates are increased at all ages (cardiovascular and neurological diseases)

The average life expectancy for this cohort was decreased by 10-15 years

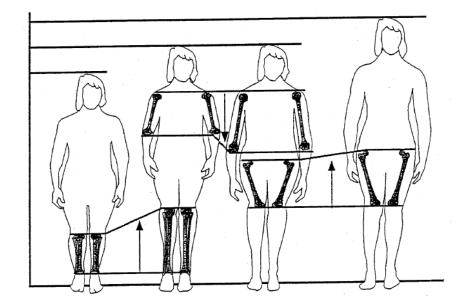
have lower annual incomes, less education, and are less likely to be married than people without achrondroplasia

Gollust SE, et al. Living with achondroplasia in an average-sized world: an assessment of quality of life. Am J Med Genet A 2003; 120: 447–58.

Rev Esp Cir Ortop Traumatol. 2014;58(3):171-18

Extended lengthening for ACH

Still controversial, special considerations:


- age and sex of the patient
- initial segment length and axial deformities
- estimation of the potential lengthening
- elongation obtained
- type of fixator
- time for consolidation
- complications
- rehabilitation problems
- psychological aspects of the child and family

Methods and Strategies in Limb Lengthening and Realignment for Skeletal Dysplasia

John E. Herzenberg and Dror Paley

University of Maryland Center for Limb Lengthening and Reconstruction, Baltimore, Maryland, USA

1st stage: 15 cm bilateral tibial lengthening at age 11

2nd stage: 10 cm bilateral humeral lengthening at age 13

3rd stage: 10 cm bilateral femoral lengthening at age 16

STAGED LENGTHENING IN ACHONDROPLASTIC DWARFS. 27 YEARS OF CLINICAL AND SURGICAL EXPERIENCE

G. PERETTI, W. ALBISETTI, O. DE BARTOLOMEO, A. MEMEO, G. M. PERETTI and F. VERDONI

Department of Surgical, Reconstructive and Diagnostic Sciences, Section of Orthopedics, Traumatology, Rheumatology and Rehabilitation, University of Milan, Milan, Italy

Protocol description								
surgical approach	age (yrs)	segment	initial length of the segment (cm)	forecast lengthening (cm)	final length (cm)			
first	5 to 6	tibiae	13-16	5 to 6	18 to 22			
second	6 to 7	femuri	15-19	5 to 7	20 to 26			
third	11 to 12	tibiae	22-27	7 to 10	29 to 37			
fourth	12 to 14	femuri	25-29	8 to 12	33 to 41			
fifth	16	humeri	12-20	8 to 12	20 to 32			

STAGED LENGTHENING IN ACHONDROPLASTIC DWARFS. 27 YEARS OF CLINICAL AND SURGICAL EXPERIENCE

G. PERETTI, W. ALBISETTI, O. DE BARTOLOMEO, A. MEMEO, G. M. PERETTI and F. VERDONI

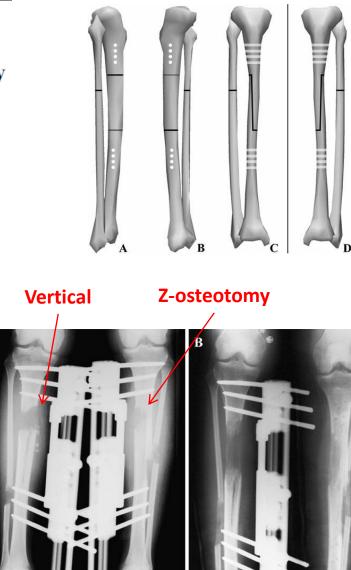
Department of Surgical, Reconstructive and Diagnostic Sciences, Section of Orthopedics, Traumatology, Rheumatology and Rehabilitation, University of Milan, Milan, Italy

99 patients/ 592 operations: satisfactory correction, improves limbs and body function and gives psychological support to these children, considered as a valid surgical procedure

Skin infection 166 (75.5%)
Transient nerve palsy 45 (20%)
Tendon retraction 25 (11.36%)
Incomplete osteotomy 8 (3.63%)
Increased lumbar lordosis 4 (2%)
Axial deformities 10 (4.5%)
Others 55 (22%)

ORIGINAL PAPER

Distraction osteogenesis using a longitudinal corticotomy


Ma'ad F. Al-Saati • Robert A. Magnussen • Sebastien Lustig • Rodolphe Testa • Gazal Al-Saati • Faisal Al-Saati

51 patients/67 procedures (short stature 32 pt)
45 longitudinal corticotomy,
22 transverse corticotomy.

Healing index was significantly lower in the S-Z group (30.8 days/cm) than 46.8 days/cm

Mean lengthening was 6.6 cm in the S-Z group and 5.8 in the transverse group

Mean consolidation time was 6.3±2.8 vs 8.1±3.8

CLINICAL RESEARCH

Is Bilateral Lower Limb Lengthening Appropriate for Achondroplasia?

Midterm Analysis of the Complications and Quality of Life

Seung-Ju Kim MD, Gracia Cielo Balce MD, Mandar Vikas Agashe MD, Sang-Heon Song MD, Hae-Ryong Song MD, PhD

22 ACH patients (average age, 12.7 years) who underwent bilateral lower limb lengthening

22 patients with achondroplasia for whom limb lengthening was not performed.

The 2 groups were assessed using the AAOS lower limb, SF-36, and Rosenberg self esteem scores.

Minimum follow up was 4.5 years

Average length was 10.21 ± 2.39 cm for the femur and 9.13 ± 2.12 cm for the tibia

123 complications occurred in 88 segments.

The surgical group had higher Rosenberg self-esteem scores but no differences in the AAOS and the SF-36 scores

The self-esteem scores decreased with the increase in the number of complications

Physeal growth arrest after tibial lengthening in achondroplasia 23 children followed to skeletal maturity

Sang-Heon Song¹, Mandar Vikas Agashe¹, Young-Jae Huh¹, Soon-Young Hwang² and Hae-Ryong Song¹

Physeal damage occurs after limb lengthening by over **50%** in achondroplasia.

This damage is a gradual process that manifests itself about 2 years after surgery, and it is most pronounced in the anteriorlateral portion of the proximal tibial physis

In **Korean** children, lengthening should preferably be started at around 11 years of age

Orthopaedics & Traumatology: Surgery & Research (2012) 98, 621-628

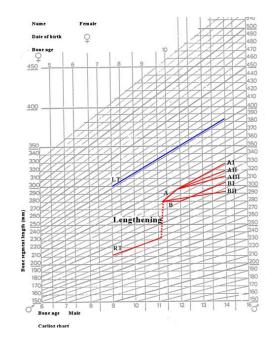
Available online at SciVerse ScienceDirect www.sciencedirect.com

ORIGINAL ARTICLE

Analysis of segmental residual growth after progressive bone lengthening in congenital lower limb deformity

D. Popkov^a, P. Journeau^{b,*}, A. Popkov^c, B. Pedeutour^b, T. Haumont^b, P. Lascombes^d

Factors negatively impacting growth stimulation rate:

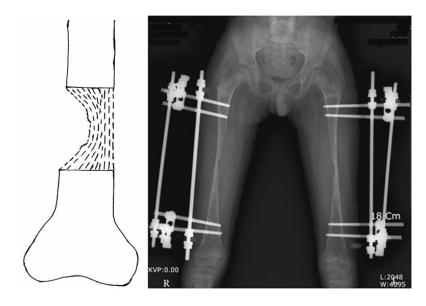

Age at initiation of lengthening
 bone age > 12 years in boys or 9 years in girls

Elsevier Masson France

EMconsulte

- Number of lengthening procedures per segment

 iterative lengthening, even when performed
 outside of the pubertal growth boost period
- Interval between lengthening procedures
 when performed before pubertal growth boost and more than 3 years after the first procedure
- Percentage lengthening
 more than 30% of initial segment length


SCIENTIFIC ARTICLE

Callus features of regenerate fracture cases in femoral lengthening in achondroplasia

Kamlesh N. Devmurari • Hae Ryong Song • Hitesh N. Modi • K. P. Venkatesh • Kim Seung Ju •

28 patients (14 with fracture and 14 without)

A lucent pathway was seen in all fracture cases with concave, lateral, and atypical shapes, and there was **more than 30% lengthening** and 30% reduction of the callus width compared with the natural width of the femur, which are the warning signs for regenerate fractures

ORIGINAL PAPER

Complications of Ilizarov leg lengthening: a comparative study between patients with leg length discrepancy and short stature

B. Vargas Barreto · J. Caton · Z. Merabet · J. C. Panisset · J. P. Pracros

during lengthening of the tibia with the Ilizarov device, approximately **one in two patients** requires a secondary surgical procedure not planned in the initial lengthening program

	Group A ^a	Group B ^b	Total of complications
Category I	19	36	55
Category II	15	18	33
Category III	2	0	2
Total	36	54	90

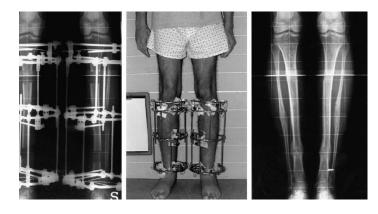
Table 2 Complications

^a Group A: patients with limb length discrepancy

^b Group B: short stature patients

Extended Limb Lengthening, Little People of America Medical Advisory Board Position Summary, 2006

There are no established medical indications for symmetric extended limb lengthening (ELL). While it **may have benefit** in preventing certain orthopedic and neurological complications in some skeletal dysplasias, the procedure is primarily being performed for **adaptive**, **cosmetic**, and **psychosocial** reasons. 66We are a contradiction in packaging, for encased in our small bodies are not small minds, not small needs and desires, not small goals and pleasures, and not small appetites for a full and enriching life??



Cosmetic bilateral leg lengthening

EXPERIENCE OF 54 CASES

J Bone Joint Surg [Br] 2005;87-B:1402-5. M. A. Catagni, L. Lovisetti, F. Guerreschi, A. Combi, G. Ottaviani

54 patients, mean age 25.8.years
mean lengthening 7 cm (5 to 11) at 9 months
19 (35.2%), bilateral Achilles tendon lengthening
48% pin site infection
90% will perform the operation again

Ilizarov technique of lengthening and then nailing for height increase

Khaled Emara, Amr Farouk, Rami Diab Department of Orthopaedic Surgery, Ain Shams University Hospitals, Cairo, Egypt

26 men and 6 women aged 21 to 47 body height of 160 to 176 mean lengthening **7.6 cm** or 26% mean duration of external fixation 96 days 4 patients had revision operations

New perspectives of DI

Byproduct advances

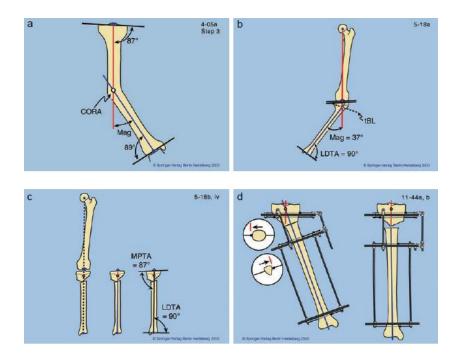
Progress in and from Limb Lengthening

Dror Paley, MD, FRCSC Director, Paley Advanced Limb Lengthening Institute, St. Mary's Hospital, FL

- Deformity analysis and nomenclature
- Prediction of limb length discrepancy (LLD), timing of epiphysiodesis and stature
- Lengthening over nail (LON), or plate (LOP) lengthening and then nailing (LATN) or plating (LATP)
- Fixator assisted nailing (FAN) and fixator assisted plating (FAP) for deformity correction

New product advances

- Modularity of monolateral external fixators
- Motorized circular external fixation
- Computer dependent external fixation
- Implantable limb lengthening
- Biological advantages and improvement of healing


Deformity analysis and nomenclature

The **CORA** (center of rotation and angulation) method to accurately determine the level of the Ilizarov hinge

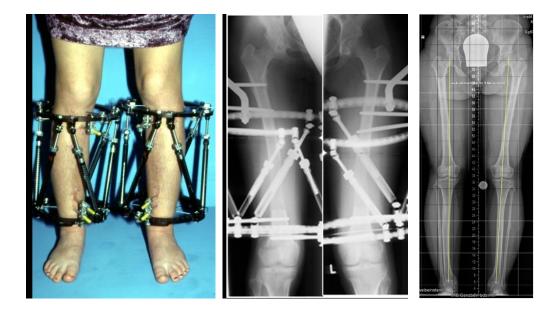
Plane of deformity

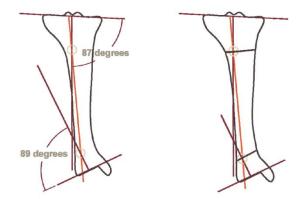
Six axis deformity correction

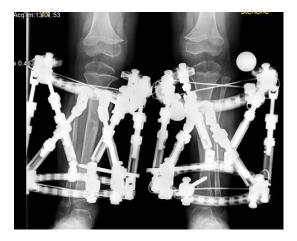
Joint orientation angles in the frontal and sagittal plane.

Send Orders of Reprints at reprints@benthamscience.net

The Open Orthopaedics Journal, 2013, 7, 33-39


33


Open Access


Treatment of Varus Deformities of the Lower Limbs in Patients with Achondroplasia and Hypochondroplasia

Ali Al Kaissi^{*,1,2}, Sebastian Farr², Rudolf Ganger², Jochen G. Hofstaetter^{1,3}, Klaus Klaushofer¹ and Franz Grill²

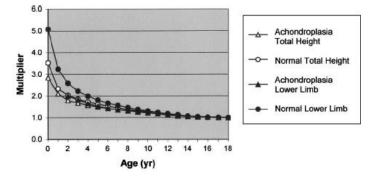
Multi-apical planning, bilevel osteotomies 4 ACH and 2 Hypochondroplasias Excellent results

Prediction of limb length discrepancy (LLD), timing of epiphysiodesis and stature

a coefficient could be calculated for each age to represent the reciprocal of growth remaining

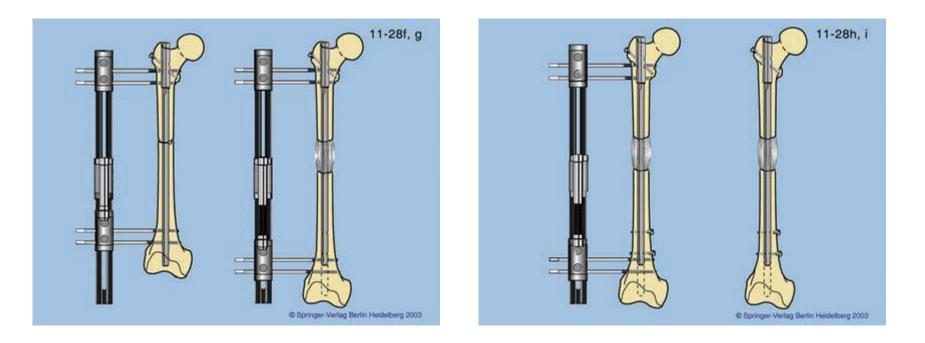
That coefficient was independent of percentile, race, nationality, and generation.

For the lower extremity the coefficients (multipliers) for the femur, tibia, and foot height were the same.


Therefore a single set of multipliers could be used to determine bone or limb length Original Article

Multiplier Method for Prediction of Adult Height in Patients with Achondroplasia

Dror Paley, MD, Alexander L. Matz, David B. Kurland, Bradley M. Lamm, DPM, and John E. Herzenberg, MD


Lower limb and total height growth rates were slower in achondroplastic dwarves compared with healthy persons. However, sitting height multipliers were closely related

Predicting maturity height for achondroplastic dwarves also helps their families to decide about stature-increasing methods, such as **limb lengthening** and growth hormone treatments

(J Pediatr Orthop 2005;25:539–542)

Lengthening over nails or plates (LON, LOP) lengthening and then nailing or plating (LATN, LATP)

International Orthopaedics (SICOT) (2012) 36:179–184 DOI 10.1007/s00264-011-1246-2

ORIGINAL PAPER

Tibial lengthening over an intramedullary nail in patients with short stature or leg-length discrepancy: a comparative study

Qianchen Guo•Tao Zhang•Yongfa Zheng• Shiqing Feng•Xinlong Ma•Feng Zhao

Table 1 Patient clinical and demographic data

Parameter	Group A ^a	Group B ^b	
Number of patients	13	26	
Number of tibiae	23	51	
Age in years (range)	22.7 (18-42)	25.4 (19-47)	
Gender (female/male)	10/3	21/5	
Bilateral (short stature)	10	25	
Congenital leg-length discrepancy	3	1	

^a Conventional Ilizarov method

^b Lengthening over a nail

281.5 versus 129.0 daysexternal fixation index (40.0 versus 17.4 day/cm).Ilizarov group had a higher complication rate(1.0 versus 0.47 per tibia)

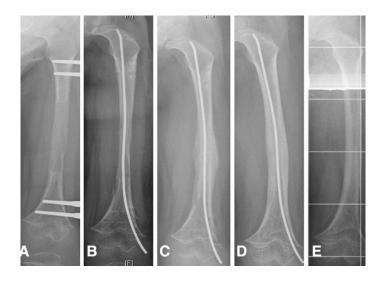
RESEARCH ARTICLE

Open Access

Prophylactic titanium elastic nailing (TEN) following femoral lengthening (Lengthening then rodding) with one or two nails reduces the risk for secondary interventions after regenerate fractures: a cohort study in monolateral vs. bilateral lengthening procedures

Frank Schiedel^{1*}, Ulrich Elsner², Georg Gosheger², Björn Vogt¹ and Robert Rödl¹

67 patients with 101 femoral lengthening

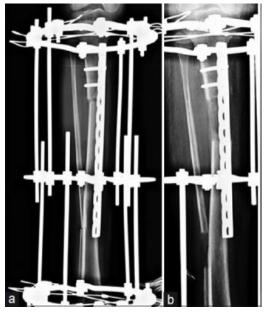

32 with ACH

12 fractures in 101 cases (12%).

The rate of secondary interventions was markedly reduced.

Usage of one or two TENs did not influence the fracture rate

Group	Diagnosis	Male	Female	Total
		(n)	(n)	(n)
A	Achondroplasia	17	15	32
	Hypochondroplasia	0	2	2
В	Congenital disorders, hemimelia	11	9	20
	acquired LLD	1	6	7
	Other causes and idiopathic LLD	3	3	6
Sum		32	35	67


Indian J Orthop. 2012 May-Jun; 46(3): 339–345. doi: <u>10.4103/0019-5413.96378</u> PMCID: PMC3377147

Limb lengthening over plate

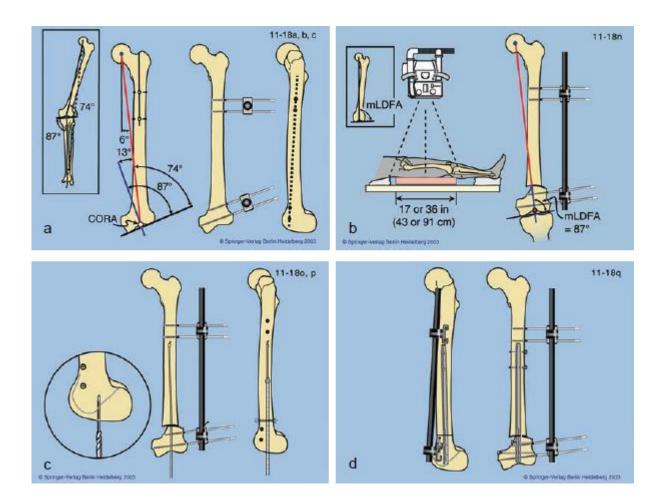
Ruta Kulkarni, Nishant Singh, Govind S Kulkarni, Milind Kulkarni, Sunil Kulkarni, and Vidisha Kulkarni Author information > Copyright and License information >

15 patients (7 females, 8 males)
average age was 18.1 years (range 8–35 years).
15 tibiae and 1 femur in 15 patients.
Rate at 1 mm/day followed by distal segment fixation with 3-4 screws on reaching the target length.

Target length was achieved in all pt (mean of 4.1 cm)
mean duration of Ex-Fix 75.3 days
mean external fixation index at 19.2 days/cm
1 patient suffered deep infection
3 patients had mild procurvatum deformities
1 patient developed mild tendo achilles contracture

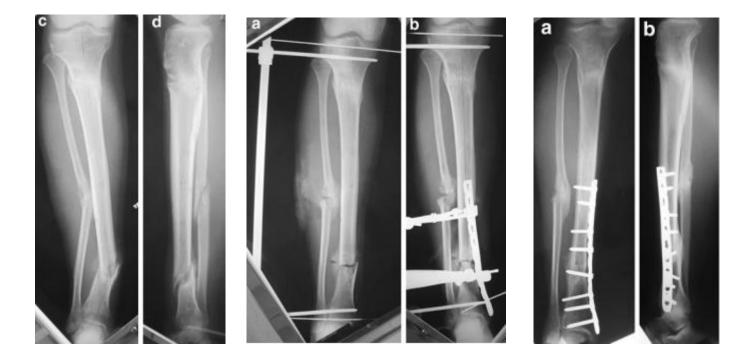


Plating after tibial lengthening: unilateral monoaxial external fixator and locking plate


Soo-Min Cha, Hyun-Dae Shin, Kyung-Cheon Kim and Jae-Hwang Song

Journal of Pediatric Orthopaedics B 2013, 22:571-576

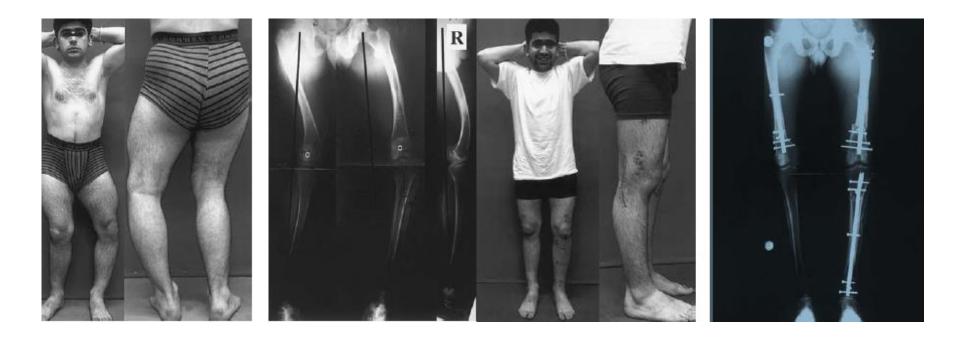
Fixator in the lateral side – plating at the medial Application immediately after the distraction phase Few complications – full consolidation – no infections


Fixator assisted nailing (FAN) and fixator assisted plating (FAP) for deformity correction

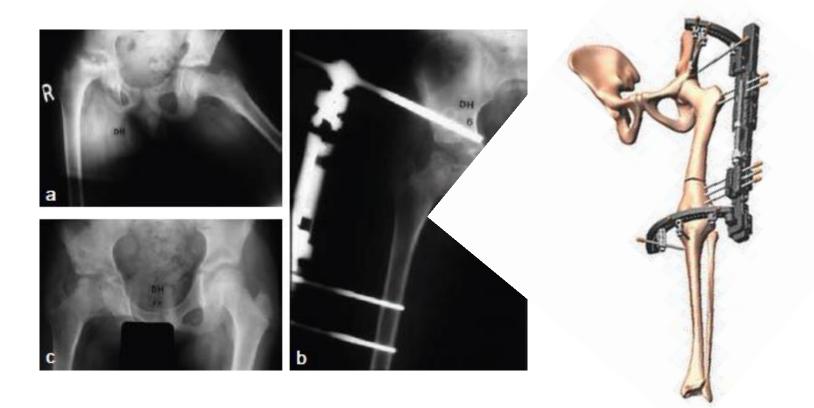
ORIGINAL ARTICLE

Distal tibial hypertrophic nonunion with deformity: treatment by fixator-assisted acute deformity correction and LCP fixation

Mahmoud A. El-Rosasy · Sameh A. El-Sallakh


CASE REPORT

A correction of windswept deformity by fixator assisted nailing

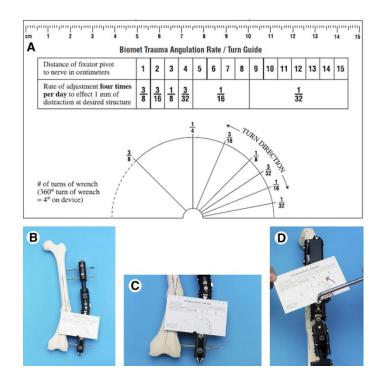

A REPORT OF TWO CASES

L. Eralp, M. Kocaoglu, M. Çakmak, V. Emre Özden

J Bone Joint Surg [Br] 2004;86-B:1065-8.

Modularity of monolateral external fixators

Operative Techniques in Orthopaedics


The MAC (Multi-Axial Correcting) Monolateral External Fixation System (Biomet/EBI) Technique: An Easier Way to Correct Deformity

Richard S. Davidson, MD

2 planes of angulation, 2 planes of translation, compression, distraction, and rotation

requires only measurement of length and angular deformity on the anteroposterior and lateral x-rays

Correction is accomplished by sequentially turning one screw to lengthen 0.25 mm 4 times per day (1 mm per d), then turning another screw to correct angulation 1° 4 times per day (4°/d).

Motorized circular external fixation

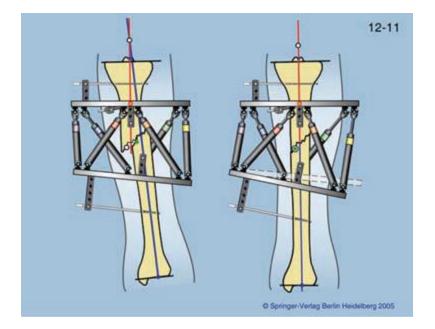
Strat Traum Limb Recon DOI 10.1007/s11751-014-0191-1

TECHNICAL REPORT

Preliminary experience with motorized distraction for tibial lengthening

Published online: 15 March 2014

Adam S. Bright • John E. Herzenberg • Dror Paley • Ian Weiner • Rolf D. Burghardt


Manual distraction (0.25 mm four times a day) in a group containing 43 tibiae was compared with **motorized high frequency distraction** (1/1,440 mm 1,400 times a day) in a group containing 27 tibiae.

There was no significant difference in time to union or in the incidence of complications

improved compliance vs cost, weight (1 Kg) and possibility of mechanical failure

Computer dependent external fixation

Orthopaedics & Traumatology: Surgery & Research (2009) 95, 425-430

ORIGINAL ARTICLE


Limb lengthening and deformity correction in children using hexapodal external fixation: Preliminary results for 36 cases

B. Blondel, F. Launay*, Y. Glard, S. Jacopin, J.-L. Jouve, G. Bollini

All the patients were managed with the same protocol: placement of an external fixator, AP and lateral X-rays, and planning of the correction using dedicated **software**

3/36 cases with achondroplasia

healing index 38.2 days/cm. superficial infection 22.2% 3 regenerate fractures

Implantable limb lengthening

Albizzia/ Guichet nail

ISKD (Orthofix)

Fitbone

PHENIX

Precise

Generally successful outcomes

Complications "run away nails" Inaccurate and unreliable distraction Premature consolidation Technical problems Nerve injuries Joint contractures

ALBIZZIA nail (1987), Guichet-advanced ALBIZZIA (2009)

Internal telescopic nail

Lengthening achieved by rotation

Rotation makes "click" noise, allowing higher accuracy

15 clicks ~1 mm

Can achieve 9-10 cm of lengthening

Complications of Albizzia femoral lengthening nail: an analysis of 36 cases

Philippe Mazeau, Chahine Assi, Djamel Louahem, Mohamed L'Kaissi, Marion Delpont and Jérôme Cottalorda

Journal of Pediatric Orthopaedics B 2012, 21:394-399

36 cases (3 short-statured)

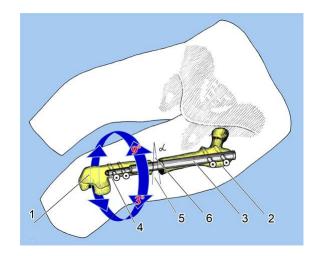
average lengthening 4.7 cm

faster consolidation

patient compliance

Table 2 Complications in the literature

(Ratcheting under anesthesia	Bone grafting	Deep infection	Program failure
Garcia-Cimbrelo series (24 cases)	5	2	0	3
Guichet series (41 cases)	12	2	2	2
Our series (36 cases)	8	3	1	3
Total (101 cases)	25	7	3	8



ISKD (INTRAMEDULLARY SKELETAL KINETIC DISTRACTOR)

Activated by polar movements through small rotation of bone segment being lengthened

Amount of length is determined pre-op and set at time of insertion

Allows 7 cm height gain

Arch Orthop Trauma Surg (2004) 124: 129-133 DOI 10.1007/s00402-003-0625-6

ORIGINAL ARTICLE

Stefan Hankemeier · Hans-Christoph Pape Thomas Gosling · Tobias Hufner · Martinus Richter Christian Krettek

Improved comfort in lower limb lengthening with the intramedullary skeletal kinetic distractor

Principles and preliminary clinical experiences

A distraction of 1 mm is achieved by 160 rotations of 3°.

The actual amount of distraction is controlled by an external handheld monitor, which measures the orientation of a magnet on the distal part of the internal threaded rod

maximal distraction length by the ISKD is 80 mm

Clinical Orthopaedics and Related Research® A Publication of The Association of Bone and Joint Surgeons®

CLINICAL RESEARCH

Femoral Lengthening with Lengthening over a Nail has Fewer Complications than Intramedullary Skeletal Kinetic Distraction

Shahab Mahboubian DO, MPH, Matthew Seah MBChB, Austin T. Fragomen MD, S. Robert Rozbruch MD

11 pt who had 12 femoral ISKD21 patients with 22 femoral LON

No difference in lengthening goals Distraction rates: fast ISKD group: 1.7 mm/day slow ISKD group: 0.84 mm/day LON group: 0.88 mm/day

1 pt in LON and **6/12** pt in IKDC group requiring additional unanticipated surgeries

FITBONE (FULLY INTEGRATED TELESCOPIC BONE)


Nail is distraction device powered by internal engine

Engine activated by hand remote

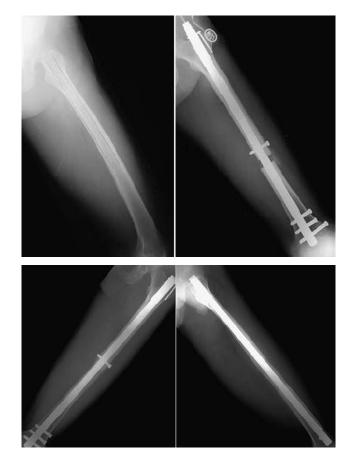
Activates distraction by sending messages to receiver below skin

Similar function as car antenna

Fitbone elongation is propelled by gear

The results of limb lengthening by callus distraction using an extending intramedullary nail (Fitbone) in non-traumatic disorders

S. Singh, A. Lahiri, M. Iqbal


J Bone Joint Surg [Br] 2006;88-B:938-42.

13 femora and 11 tibiae in ten patients mean age of 32 years **short stature** in 6/10 patients

mean lengthening 40 mm (27 to 60)

mean healing index was 35 days/cm

There were no cases of implant-related infection or malunion

Injury, Int. J. Care Injured 45S (2014) S60-S65

Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX[®])-Preliminary results

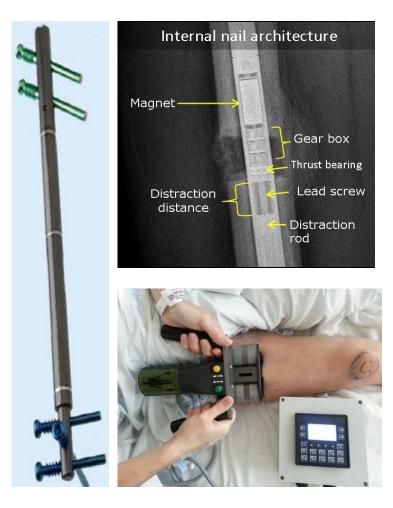
CrossMark


Peter Helmut Thaller^{a,*}, Julian Fürmetz^b, Florian Wolf^a, Thorsten Eilers^a, Wolf Mutschler^a

The mechanism is driven by a strong external magnet, can provide lengthening, shortening and bone transport

10 patients with an average age of 25 years (6 femoral / 4 tibial), distraction goal was achieved in 8 of 10 patients

mean lengthening 4.6 cm, distraction index 0.85 mm/day


3 patients revised due to early distraction arrest

Precice[®] Nail, Ellipse Technologies Inc., Irvine, CA

Telescopic, magnet-operated device, recent FDA approval

An external remote controller (ERC) is required, which causes the magnets that are integrated into the drive thread rod to rotate, making a thinner nail element telescope out of a thicker surrounding nail

How precise is the PRECICE compared to the ISKD in intramedullary limb lengthening?

Reliability and safety in 26 procedures

Frank M Schiedel¹, Björn Vogt¹, Henning L Tretow¹, Britta Schuhknecht², Georg Gosheger², Melanie J Horter¹, and Robert Rödl¹

2 nails were primarily without function

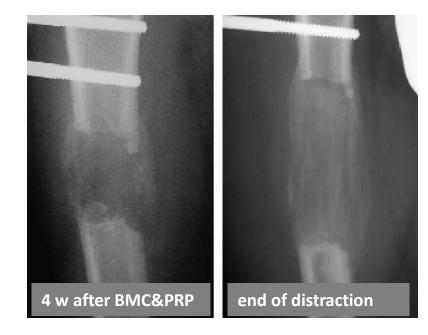
24/26 nails lengthened over the desired distance (planned 38 – achieved 37)

2 nail breakages, mostly in patients with femoral lengthening

Other complications in 5 cases

Biological advantages and improvement of healing

- systemic administration of recombinant GH
- > platelet-rich plasma
- concentrated bone marrow cells
- cultured periosteal cells
- recombinant human bone morphogenetic proteins
- frozen embryonic stem cells


Distraction Osteogenesis of the Lower Extremity in Patients With Achondroplasia/Hypochondroplasia Treated With Transplantation of Culture-Expanded Bone Marrow Cells and Platelet-Rich Plasma

> Hiroshi Kitoh, MD, Takahiko Kitakoji, MD, Hiroki Tsuchiya, MD, Mitsuyasu Katoh, MD, and Naoki Ishiguro, MD

56 bones in 20 patients (ACH 16 & HCH, 4)24 bones in 11 patients (BMC and PRP)32 bones in 9 patients (no cell therapy)

No differences in the length gained but average healing index of the BMC-PRP **6.89 d/cm** control group 10.4 d/cm

Femoral lengthening faster healing than tibial lengthening in the BMC-PRP group (J Pediatr Orthop 2007;27:629-634)

Waiting period of 9 days, and transplantation was performed 21 days after the distraction

Clin Orthop Relat Res DOI 10.1007/s11999-014-3548-3 Clinical Orthopaedics and Related Research®

SYMPOSIUM: 2013 LIMB LENGTHENING AND RECONSTRUCTION SOCIETY

Clin Orthop Relat Res. 2014

Bone Marrow Aspirate Concentrate and Platelet-rich Plasma Enhanced Bone Healing in Distraction Osteogenesis of the Tibia

Dong Hoon Lee MD, PhD, Keun Jung Ryu MD, Jin Woo Kim MD, Kyung Chung Kang MD, PhD, Young Rak Choi MD

20 patients (40 segments), who underwent bilateral stature lengthening (familiar shortening) with the **LON technique**

10 patients received BMAC & PRP injection at tibial osteotomy site at the end of the index surgery, 10 patients no injection

Mean distraction rates similar (0.75 mm/day vs 0.72 mm/day)

No difference in mean external fixator index Mean cortical healing indexes better in BMAC group Full weightbearing was permitted earlier in BMAC group

Conclusions

While the first 100 years was the story of external fixation and distraction osteogenesis, the next 100 years will be the story of:

- Implantable distraction devices
- bone transport nails
- gradual deformity correction plates
- special lengthening plates
- biofeedback controls for internal and external fixation
- modulation of molecular and regenerative biology

Also many of the genetic conditions currently being treated will have **medical** instead of surgical solutions and new applications of distraction biology will be found