Physiology of aging. How does the geriatric patient differs?

Andreas Panagopoulos MD, Ph.D Assistant Professor in Orthopedics Patras University Hospital

What is Aging?

Ageing (British English) or **Aging** (American English) is the process of becoming older

- Normal aging is not a disease
- Chronologic age & physiologic age are not the same
- Individuals "age" at different rates with significant variability

Spectrum Of Aging

• Aging, with disease and disability

• Usual aging, with the absence of overt pathology, but with some declines in function

• Successful aging or *healthy aging*, with little or no pathology and little or no functional loss

Both in their 90's

Our Objectives

Outline the main aging theories

Describe major age-associated changes in physiology

Understand the importance of impaired homeostasis

Be able to assess nutritional status of older adults

Be able to compare usual to successful aging

Two Main Aging Theory Categories

• Programmed Theories

Aging has a biological timetable or internal biological clock

• Error Theories

Aging is a result of internal or external assaults that damage cells or organs so they can no longer function properly.

Programmed vs. Error Theories

Programmed Theories

- Programmed Senescence Theory
- Endocrine Theory
- Immunology Theory

Error Theories

- Wear and Tear Theory
- Rate-of-Living Theory
- Cross-linking Theory
- Free Radical Theory
- Error CatastropheTheory
- Somatic Mutation Theory

Telomeric Theory

- The enzyme, telomerase, fills the gap by attaching bases to the end of the chromosomes.
- With time, telomerase levels decrease.
- With decreasing telomerase levels, the telomeres become shorter and shorter.

Free Radical Theory

- During aging, damage produced by free radicals cause cells and organs to stop functioning
- The free radical theory of aging proposes that, littleby-little, small amounts of damage accumulate and contribute to deterioration of tissues and organs

Free Radicals

As the free radical (green) attacks the membrane it can release another type free radical (blue).

The free radical (blue) attacks the DNA releasing another free radical (purple).

The anti-oxidant molecule destroys the damaging free radical. The membrane repairs itself, but the DNA remains damaged, impairing the cells function. In addition, the anti-oxidant molecule now has an unpaired electron and thus becomes a new radical.

Physiology of aging: everything slows down after 30

Overview of Altered Aging Physiology

Cardiovascular system

Changes in mechanics

Increase in collagen-connective tissue

Thickened & stiff heart valves

Decreased vascular compliance

Increased systolic blood pressure

Left ventricular hyperthrophy

Cardiovascular system

Changes in "control mechanisms"

Decreased responsiveness to catecholamines

Decreased maximum heart rate response

Possible congestive heart failure

CO = SV x HR {preload dependent} Co = cardiac output SV = stroke volume HR = heart rate

Pulmonary system

Reduced chest wall compliance

- increased work of breathing
- reduced maximum minute ventilation

Reduced response to hypoxia by 50% - impaired chemoreceptor function

Reduced cough and swallowing function

- Decreased number of nerve endings in larynx

Reduced functional alveoli

- the wall become thin, the alveoli enlarge and less elastic

Pulmonary system

Pulmonary arteries thickens & enlarges

resistance to blood flow in lungs

↑ Pulmonary artery pressure

Less functional alveoli (same number) less surface area for O_2 -CO₂ exchange

lower O₂ to supply vital organs

Especially after major trauma

- Partial pressure of oxygen drops by 10 mg Hg per decade after age 60
 - 60 yo \rightarrow 80 mm Hg
 - 70 yo \rightarrow 70 mm Hg
 - 80 yo \rightarrow 60 mm Hg
 - 90 yo \rightarrow 50 mm Hg

Renal system

Decreased renal blood flow 600ml/min (40y) to 300ml/min (80y)

Kidney size decreases 20-30% by age 90

Decreased Glomular Filtration Rate 50% by age 75

Old kidneys have difficulty to:

- maintaining circulating blood volume
- removing excess acid
- regulate sodium homeostasis
- adjust to: hypovolemia, hemorrhage & hypotension

Renal system

Creatinine clearance vs normal serum creatinine

```
90 year old woman, 50 Kgr
```

```
Serum creatinine = 1.0
```

Estimated creatinine clearance is? > 90 ml/min 70-90 ml/min 50-70 ml/min 30-50 ml/min < 30 ml/min **Creatinine Clearance Calculator**

Sex:	🔘 Male 💿 Female
Weight:	50 Kilograms 🔻
Age:	90 Years
Serum Creatinine:	1 mg/dL
	Calculate Clear
Results:	29.51 mL/min is your estimated creatinine clearance.

Creatinine Clearance = [[140 - age(yr)]*weight(kg)]/[72*serum Cr(mg/dL)] Multiply by 0.85 for women

Neurologic Changes

Brain neuronal loss throughout life

- basal ganglia atrophy
- loss is gray matter (not white matter)
- \downarrow neuronal transmission
- \downarrow dopamine & \uparrow muscular rigidity

Impaired hearing, smell decreases

Changes in sleep cycle:

- longer to fall asleep,
- less total time of sleeping
- awakenings throughout the night

Delirium: a Geriatric syndrome

Inouye Ann Intern Med 1993

Siddiqi Cochrane Database Sys Rev 2007

McGory Annals of Surgery 2009

Endocrine system

In most glands there is some atrophy & decreased secretion with age, but the clinical implications of this are not known

Not "normal" ageing process, but common: subclinical hypo- and hyperthyroidism in the elderly

Musculoskeletal System

Sarcopenia

- - \downarrow muscle mass & contractile force
- reduced growth hormone production

increased fatigue & risk of falling

Sarcopenia affects all muscles

- respiratory muscles (\downarrow breathing)
- GI tract (constipation).

Visual changes

Visual acuity

- cataracts, macular degeneration

Decreased lens compliance

- Reduced accommodation

- Presbyopia

Reduced tear formation - dry eyes

Reduced pupil size - reduced night vision

Loss of cones - reduced color vision

Predisposition to falls

Aging skin

Delayed wound healing

- More easily damaged
- Altered thermal regulation
- Decreased sensitivity to pain-pressure
- Decreased inflammatory response
- Wrinkling, sagging skin
- Easily stretched under low loads

Malnutrition Among Older Persons

- 5-12% in community
- 30-61% hospitalized
- 40-85% in long-term care facilities.

Importance of Nutrition for Older Adults

Older Adults are at increased risk of inadequate diet from:

- Diseases acute/chronic
- Physical limitations
- Inability to chew and poor oral health
- Social isolation/depression/low income
- Impaired functional status
- Alcohol use and abuse
- Drug nutrient Interactions

Lifestyle modification.....

Year

Stay Active.....

Benefits of Exercise

- Weight loss (↓ central adiposity)
- Blood pressure decline
- Aerobic capacity increase
- Insulin sensitivity increase
- Increase bone mass
- Increase muscle strength
- Increase perceived well being

What works better?

Regular Exercise

Reasonable body weight

"Eat your vegetables and fruit"

Don't smoke

Remain Socially Engaged

Regular preventive health visits -vision, blood pressure, cholesterol, diabetes

Overview of Altered Aging Physiology

Summary

- Aging is associated with reduced functional reserve and a compromised ability to cope with stressors
- Elderly are a heterogeneous group and there is great individual variability
- Always think of interventions which may be useful in helping patients cope with and/or overcome some of the changes brought by normal aging
- Start building your reserves NOW