Intramedullary Nailing of Humeral Shaft Fractures Antegrade or Retrograde approach?

Andreas Panagopoulos, MD, Ph.D.

Assistant Professor in Orthopedics, Medical School, Patras University

Sports Medicine & Knee Fellow, University of Leeds, UK

Shoulder & Elbow Fellow, King's College University, UK

Epidemiology

- 1-3% of all orthopaedic fractures
- 20% of shoulder fractures
- bimodal distribution 30 (m) & 70 (w)

Ekholm R, et al. 2006. Fractures of the shaft of the humerus. An epidemiological study of 401 fractures. J Bone Joint Surg Br 88: 1469–73.

Surgical anatomy

Table 16.1.	Position	of fracture	fragment	s
-------------	----------	-------------	----------	---

Fracture Location	Proximal Fragment	Distal Fragment
Above pectoralis major insertion	Abducted, rotated externally by rotator cuff	Medial, proximal by deltoid and pectoralis major
Between pectoralis major and deltoid tuberosity	Medial by pectoralis, teres major, and latissimus dorsi	Lateral, proximal by deltoid
Distal to deltoid tuberosity	Abducted by deltoid	Medial, proximal by biceps and triceps

Deltoid

Triceps

Biceps

Mechanism of injury

- direct blow to the arm
- twisting injuries
- traffic accidents
- pathologic fractures

	Incidence	Age
Injury	(%)	(yr)
Simple fall	59.2	65.3
Fall from a height	7.9	43.2
Sport	4.6	20.5
RTA (pedestrian)	4.2	42.2
RTA (vehicular)	12.9	29.2
Pathological	6.2	53.4
Miscellaneous	5.1	36.9

Clinical & radiological evaluation

- Pain, swelling, deformity, haematoma, pathologic motion, crepitus, shortening

- assess motor and sensory function of the radial, median and ulnar nerves

Anteroposterior (AP) and lateral radiographs should be obtained first

The shoulder and elbow should be included on each radiograph

Classification

Low vs high energy

Soft tissue injury

Open fracture grading

Associated injuries

Nerve or vascular injury

Co-morbidity

AO classification

Review article Acute and chronic humeral shaft fractures in adults L. Pidhorz*

Conservative

External fixation

Plate fixation

Intramedullary nailing

New fixations techniques and the pressure from patients for faster recovery have lead to increase use of surgical treatment

Accepted Manuscript

Title: Factors Predicting Patient Reported Functional Outcome Scores after Humeral Shaft Fractures

Author: Edward Shields Leigh Sundem Sean Childs Michael Maceroli Catherine Humphrey John Ketz John T. Gorczyca

Statistically significant effect on **patient-reported functional outcomes** following treatment of humeral shaft fractures, regardless of treatment modality, injury mechanism, and associated fractures

- patient age,
- history of psychiatric illness,
- insurance type,
- Charlson co-morbidity Index score,
- fracture location

Indications for operative intervention

- 1. Inability to maintain reduction due to obesity, intolerance of orthosis
- 2. Specific **fracture patterns** (segmental, simple transverse, long spiral, Holstein & Lewis)
- 3. Patients with multiple trauma
- 4. Bilateral fractures
- 5. Open fractures

Indications for operative intervention

- 6. Pathological fractures
- 7. Ipsilateral injuries (floating elbow or shoulder)
- 8. Spinal cord and brachial plexus injuries
- 9. Fractures associated with major vascular injuries
- 10. **Progressive** or **new onset** of a radial nerve palsy

Conservative treatment

Fractures of the shaft of the humerus will usually unite, irrespective of the type of the fracture (Sarmiento et al., 2001)

Union rates > 90% are often reported

Acceptable alignment:

- 3 cm of shortening
- 30 of varus / valgus angulation
- 20 of anterior / posterior angulation

Journal of Shoulder and Elbow Surgery www.elsevier.com/locate/ymse

CrossMark

Nonoperative treatment of humeral shaft fractures revisited

Erden Ali, MRCS^{a,c,*}, Dylan Griffiths, FRCS (T&O)^b, Nnamdi Obi, MRCS^a, Graham Tytherleigh-Strong, FRCS (T&O)^a, Lee Van Rensburg, FRCS (T&O)^a

207 fractures, 138 fractures 5 y follow up (24 nonunions – 15 operative treatment)

Overall union rate 83%

- Proximal third:76%
- Middle third: 88%
- Distal third: 85%

Comminuted fractures: 89% union rate regardless position

Plate osteosynthesis

Strong indications:

- periprosthetic fractures
- nonunion or delayed union
- ipsilateral arm fractures
- specific fracture patterns?

The rates of non-union and hardware failure requiring revision range from 2.5 to 16%

The most common complications are iatrogenic nerve palsy (0–5%) and infection (0–6%)

Holstein-Lewis with radial nerve palsy

Intramedullary nailing

UHN

J Orthop Sci (2011) 16:644-651 DOI 10.1007/s00776-011-0127-2

ORIGINAL ARTICLE

Mismatch analysis of humeral nailing: antegrade versus retrograde insertion

Banchong Mahaisavariya · Pongnarin Jiamwatthanachai · Panya Aroonjarattham · Kitti Aroonjarattham · Marut Wongcumchang · Kriskrai Sitthiseripratip

virtual simulation (CT) 76 Thai cadaveric humeri Russell-Taylor HN (8 mm 220 mm)

- (1) the diameter of the medullary canal averaged 7.9–13.8 mm
- (2) Retrograde nailing requires excessive reaming at the distal part of the humerus to accommodate nail insertion

Intramedullary nailing

Success rate as high as that for other methods:

(Ingman and Waters, 1994; Rodriguez-Merchan, 1995; Rommens et al., 1995; Shazar et al., 1998; Sims and Smith, 1995; Brumback, 1996; Redmondet al., 1996; Achecar and Whittle, 1997; Lin et al., 1997; Crates and Whittle, 1998; Tome et al., 1998).

non-union 6%

infection 2%

radial nerve palsies 3%

Intramedullary nailing

Advantages:

shorter operating time, no need of external support, reduced blood loss, low infection rate, and early recovery of function

Problems:

Antegrade: proximal migration, RC integrity, interlocking, extension of the fracture, diastasis, radial nerve palsy

Retrograde: Eccentric nail insertion, proximal interlocking, axillary nerve, fracture extension

EXPERIMENTAL STUDY

Acta Orthop Traumatol Ture 2013;47(3):173-178 doi:10.3944/AOTT.2013.2701

Biomechanical evaluation of different internal fixation methods for humerus shaft fractures with medial butterfly fragment

Mehmet Aykut TÜRKEN¹, Mehmet AKDEMİR², Bora UZUN³, Mustafa ÖZKAN⁴

The biomechanical stability appears to be similar in the fixation of humerus shaft fractures with medial butterfly fragment.

Complications after interlocking intramedullary nailing of humeral shaft fractures

Asen Baltov^{*}, Rashkov Mihail, Enchev Dian Department of Trauma Surgery, Emergency Trauma Hospital "NLPirogov", Sofia, Bulgaria

111 patients (105 antegrade)

52 intraoperative complications in 40 pt (36%)

CrossMark

Distraction 4.5% Wrong screws 8.1% Additional fracture 6.3% Nail protrusion 7.2%

36 secondary surgeries (32.5%)

Complications of Locked Nailing in Humeral Shaft Fractures

Jinn Lin, MD, PhD, Po-Wen Shen, MD, and Sheng-Mou Hou, MD, PhD

antegrade nailing: 87 fractures (proximal) retrograde nailing: 74 (distal)

Table 1 Postoperative Complications of HumeralLocked Nailing in 159 Patients

Complications	No. of Patients
Nonunion	9
Protruded proximal screw	2
Shoulder joint impairment	7
Elbow joint impairment	3
Operative comminution (with fracture union)	2
Fracture gap (with fracture union)	3
Transient postnailing radial nerve palsy	3*
Angular malunion	2
Total	31

* One patient had nonunion simultaneously.

significantly higher in risk of operative comminution with retrograde nailing

Medknow Publications

Indian J Orthop. 2011 May-Jun; 45(3): 208-215.

Diaphyseal humeral fractures and intramedullary nailing: Can we improve outcomes?

Christos Garnavos

Antegrade nailing	Retrogade nailing
Violation of RC	Eccentric nail insertion
Distal interlocking	Proximal interlocking
Soft tissues around shoulder	Soft tissue around shoulder
Soft tissues around elbow	

Ream/undreamed, antegrade/retrograde,

solid/flexible, locking/unlocked? C. A. Müller • P. Henle • G. Konrad • M. Szarzynski • P. C. Strohm • N. P. Südkamp Klinik für Unfall-, Hand- und orthopädische Chirurgie, Klinikum Karlsruhe

Der "AO/ASIF-Flexnail"

Klinische Ergebnisse der Marknagelosteosynthese von Humerusschaftfrakturen 34 patients were treated with the flexible nail mean duration for fracture consolidation was 10 weeks. Constant score was 93 points

Antegrade entry site, through the greater tuberosity.

2 Open the proximal humerus with the Medium Awl.

3 Verify size and shape of entry hole with Nail Trial.

⁴ Drill entry site with the 8.0 mm and 10.5 mm Flexible Drill Bits, if necessary.

5 Insert the nail. Flex the nail by bending the Insertion Handle towards the nail tip.

ORIGINAL ARTICLE

Panayiotis Dimakopoulos · Andreas X. Papadopoulos Michalis Papas · Andreas Panagopoulos · Elias Lambiris

Modified extra rotator-cuff entry point in antegrade humeral nailing

ORIGINAL ARTICLE

Panayiotis Dimakopoulos · Andreas X. Papadopoulos Michalis Papas · Andreas Panagopoulos · Elias Lambiris

Modified extra rotator-cuff entry point in antegrade humeral nailing

Original Article

Intramedullary nailing of humeral diaphyseal fractures. Is distal locking really necessary?

Minos Tyllianakis, Pantelis Tsoumpos, Kostas Anagnostou, Anna Konstantopoulou, Andreas Panagopoulos

Access this article online Website: www.internationalshoulderjournal.org DOI: 10.4103/0973-6042.114233 Quick Response Code:

65 International Journal of Shoulder Surgery - Apr-Jun 2013 / Vol 7 / Issue 2 ♦

2 nonunions / 63 fractures

Constant score, at a minimum of 2-year follow-up, was excellent or very good in 93.7% of the patients

New Technique for Humerus Shaft Fracture Retrograde Intramedullary Nailing

(Tech Hand Surg 2011;15: 138-143)

Anne M. Hollister, MD,* Carla Saulsbery, OTR, CHT,† Jennifer L. Odom, PA-C,* Lucas Anissian, MD, PhD,* Mark Tyson Garon, MD,* and Jenee' Jordan‡

TABLE 1. Literature Results

References	No. Patients in Study	% Radial Nerve Palsies	% Iatrogenic Fractures
Blum et al ¹	57	15%	14%
Cheng and Lin ²	43	4%	Not reported
Rommens et al3	190	4.2%	4.2%
Loitz et al ⁴	120	Not reported	5.8%
Martinez et al5	21	Not reported	5%
Muckley et al6	36	Not reported	5.5%
Rommens et al7	99	3%	2%
Wang et al ⁸	707	4.2%	Not reported

Incidence of perioperative fractures and radial nerve palsy reported in the literature.

New Technique for Humerus Shaft Fracture Retrograde Intramedullary Nailing

Anne M. Hollister, MD,* Carla Saulsbery, OTR, CHT,† Jennifer L. Odom, PA-C,* Lucas Anissian, MD, PhD,* Mark Tyson Garon, MD,* and Jenee' Jordan‡

Injury, Int. J. Care Injured 44 (2013) 514–517

An innovative technique of rear entry creation for retrograde humeral nailing: How to avoid iatrogenic comminution

Roland Biber^{a,*}, Birgit Zirngibl^a, Hermann Josef Bail^a, Hans-Werner Stedtfeld^b

^a Department of Trauma and Orthopaedic Surgery, Klinikum Nürnberg, Süd, Breslauer Strasse 201, 90471 Nürnberg, Germany ^b Department for Trauma and Reconstructive Surgery, University of Rostock, Schillingallee 35, 18057 Rostock, Germany Special design for Targon nail, no intraoperative fracture in 41 cases

Locking Flexible Nails for Diaphyseal Humeral Fractures in the Multiply Injured Patient: A Preliminary Study

Amir Matityahu, MD and W. Andrew Eglseder, Jr, MD

Antegrade 27 patients (midshaft to distal)

retrograde 16 patients (midshaft to proximal)

union rate antegrade (93%) retrograde (69%)

No significant difference in shoulder and elbow pain or range of motion

(Tech Hand Surg 2011;15: 172-176)

Functional Outcome after Intramedullary Nailing of Humeral Shaft Fractures: Comparison between Retrograde Marchetti-Vicenzi and Unreamed AO Antegrade Nailing

Thierry Scheerlinck, MD, and Frank Handelberg, MD

J Trauma. 2002;52:60-71.

Functional Outcome after Intramedullary Nailing of Humeral Shaft Fractures: Comparison between Retrograde Marchetti-Vicenzi and Unreamed AO Antegrade Nailing

J Trauma. 2002;52:60-71.

Thierry Scheerlinck, MD, and Frank Handelberg, MD

	MVN (%)	AO-UHN (%)	Total (%)
Complications during or after nail insertion (n)	30	22	52
No complications	21 (70.0)	14 (63.6)	35 (67.3)
latrogenic supracondylar fracture	2 (6.7)	0 (0.0)	2 (3.8)
Fracture extension	1 (3.3)	3 (13.6)	6 (11.5)
Proximal nail protrusion	2 (6.7)	4 (18.2)	6 (11.5)
Transient n. radialis paresis	1 (3.3)	0 (0.0)	1 (1.9)
Screw breakage	0 (0.0)	1 (4.5)	1 (1.9)
Nonunion	2 (8.0)*	1 (5.5)*	3 (7.0)*
Frozen shoulder requiring mobilization	1 (5.3)**	1 (5.9)**	2 (5.6)**
Complications during or after nail removal (n)	7	8	15
No complications	4 (57.1)	7 (87.5)	11 (73.3)
Impossibility to remove the nail	1 (14.3)	1 (12.5)	2 (13.3)
Perioperative supracondylar fracture	1 (14.3)	0 (0.0)	1 (6.7)
Postoperative supracondylar fracture	1 (14.3)	0 (0.0)	1 (6.7)

The retrograde approach to the humeral medullary cavity using a MVN resulted in better shoulder function and similar elbow function compared with the antegrade approach using an AO-UHN

Prospective Randomized Comparative Study of Antegrade and Retrograde Locked Nailing for Middle Humeral Shaft Fracture

J Trauma. 2008;65:94-102.

Hao-Ren Cheng, MD, and Jinn Lin, MD, PhD

Table 2 Perioperative and Postoperative Variables

Variable	Antegrade (n = 44)	Retrograde (n = 45)	p (95% Confidence Interval)
Time to operation (d)	2.4 ± 1.3	2.6 ± 1.6	0.52 (-0.82 to 0.42)
Operative bleeding amount (ml.)	60 ± 20	54 ± 23	0.19 (-3.09 to 15.1)
Fluoroscopic time (min)	1.3 ± 0.3	1.2 ± 0.4	0.19 (-0.05 to 0.25)
Operation time (min)	51.3 ± 13.3	64.8 ± 12.2	<0.01 (-18.9 to -8.12)*
Fracture healing rate	42 (95%)	42 (93%)	0.51 (0.92 to 1.13)
Follow-up time (mo)	18.6 ± 3.1	19.8 ± 3.7	0.1 (-2.64 to 0.24)
Time to healing (wk)	10.8 ± 3.5	12.1 ± 3.9	0.1 (-2.86 to 0.26)
Operative radial nerve palsy	2 (5%)	1 (2%)	0.54 (0.18 to 23.9)
Screw backout	4 (9%)	1 (2%)	0.17 (0.47 to 41.03)

similar treatment results, including healing rate and eventual functional recovery for middle humeral fractures

Strat Traum Limb Recon (2014) 9:133-140 DOI 10.1007/s11751-014-0204-0

ORIGINAL ARTICLE

Internal fixation of shaft humerus fractures by dynamic compression plate or interlocking intramedullary nail: a prospective, randomised study

Mir G. R. Wali · Asif N. Baba · Irfan A. Latoo · Nawaz A. Bhat · Omar Khurshid Baba · Sudesh Sharma

25 patients in each group mean age 37 years Road traffic accident

Significant difference: duration of hospital stay, operative time and blood loss

No difference in terms of union or complications.

Functional outcome similar at 1 year

Contents lists available at ScienceDirect International Journal of Surgery

journal homepage: www.journal-surgery.net

Original research

Meta-analysis of the outcomes of intramedullary nailing and plate fixation of humeral shaft fractures

CrossMark

Guo-dong Liu^{a,h,*}, Qing-gang Zhang^{b,h}, Shan Ou^{c,**}, Le-shun Zhou^c, Jun Fei^d, Hong-wei Chen^e, Guo-xin Nan^f, Jian-wen Gu^g

10 studies (1990-2012)

459 cases,

- 231 plating & 228 nailing
- No difference:
- nonunion
- infection
- radial nerve palsy
- other complications

Delayed healing rate lower with plate

	Intramedullary	nailing	Plate fixation Risk Ratio		Ris	Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fix	ed, 95% Cl	
Chanpman 2000	3	38	0	46	8.4%	8.44 [0.45, 158.40]			\rightarrow
Singisetti 2010	10	25	4	20	82.5%	2.00 [0.74, 5.43]		+	
Ying 2011	1	22	0	23	9.1%	3.13 [0.13, 72.99]		· · ·	-
Total (95% CI)		85		89	100.0%	2.64 [1.08, 6.49]		•	
Total events	14		4						
Heterogeneity: Chi ² =	= 0.91, df = 2 (P = 0).63); P=	0%					1 10	400
Test for overall effect	t Z = 2.12 (P = 0.03	3)				Int	U.U1 U.1 tramedullarv nailing	1 10 Plate fixation	100 N

Fig. 2. Meta-analysis results for delayed union incidence rate of humeral shaft fracture between the two groups.

Implant selection

Antegrade	Retrograde
Higher nailing linearity Easier technique Less elbow injury Small medullary canal	Less shoulder injury Fracture compression Less nailing linearity
Avoid shoulders with preexisting problems	Insert nail from upper edge of olecranon fossa
Countersink nail and screw during insertion	Avoid small medullary canal
Meticulously repair rotator cuff and bursa	Create long enough entry portal
Avoid too long nails	Adequately ream and use trial nailing
Compress fracture or use back strike technique	Manually insert nail
Bluntly dissect soft tissue during screw insertion	Avoid elbow with extension contracture

Extended Neviaser Portal Approach to Antegrade Humeral Nailing

MATTHEW F. DILISIO, MD; RYAN E. FITZGERALD, MD; ERIC T. MILLER, MD

ORTHOPEDICS | Healio.com/Orthopedics

FEBRUARY 2013 | Volume 36 • Number 2

Conclusions

- Functional bracing/nonoperative care is still the mainstay of treatment

Surgery can give a better XRay and potentially quicker recovery but with the inherent risks of surgery... choose wisely

- Careful patient selection
- Meticulous surgical technique
- Preservation of rotator cuff tendons
- avoid iatrogenic elbow fracture in RHN

