CORRELATION OF CLINICAL, RADIOLOGICAL AND ARTHROSCOPIC FINDINGS IN POST-TRAUMATIC INSTABILITY OF THE ANKLE JOINT: THE CRITICAL ROLE OF THE CALCANEOFIBULAR LIGAMENT

A. Panagopoulos, MD, PhD
Clinical Research Fellow

V. Kumar, MRCS (Glas)
SHO in Orthopaedics

J. Triantafyllopoulos, MD, PhD
Clinical Research Fellow

S. Fitsgerald, FRCR, MRCP (Irl)
Consultant Radiologist

L. van Niekerk, MD, FRCS (Ed), FRCS (Orth)
Consultant Orthopaedic Surgeon

Sports Orthopaedic Centre, Friarage Hospital & Duchess of Kent Military Hospital, Northallerton, North Yorkshire, United Kingdom
Natural history - prognosis

- 80% to 85% of acute ankle sprains are successfully treated with a functional ankle-rehabilitation program

- The remaining 15% to 20% have recurrent ankle instability and re-injury, necessitating surgical intervention

- 25% to 95% incidence of chondral lesions (persistent pain after ligament reconstruction)

- Degenerative changes after 10 years in patients with chronic ankle instability

Anatomy

- **ATFL** is the primary restraint to inversion and is usually torn in inversion, plantar flexion and internal rotation\(^1\)

- **CFL** stabilizes both the ankle & subtalar joint and tears primarily in inversion and ankle dorsiflexion\(^1\)

- In a cadaveric study ATFL was always torn when CFL was torn

“types of instability”

- ATFL #: functional instability → arthroscopy
 (giving way symptoms)

- CFL #: mechanical instability → reconstruction
 (positive provocative tests)

Peronei #: proprioception → repair

Surgical treatment

Anatomic repair

- Bostrom (95%)
- Could et al (85-90%)
- Karlsson et al (80%)

Bostrom – Could modification

- 85%-95% success rate
- Increased stability
- Preserves subtalar & talo-crural motion
- Fewer associated nerve injuries
- Less morbidity
- Quicker functional recovery
- No proprioception interference

Surgical treatment

Ligament reconstruction

- Evans
- Crisnman-Snook
- Leach
- Watson-Jones
- Larsson
- Karlsson
- Colville

Clinical comparison

Anatomic procedures vice Ligament reconstruction

- **Karlsson** (2-10 year follow-up in a multicenter trial): Tenodeses did not restore normal anatomy of the lateral ankle ligaments, unlike the anatomic repairs (restricted range of motion, reduced long-term stability and increased risk of medial degenerative joint disease).

- **Hennrikus** demonstrated that the modified Brostrom procedure resulted in higher patient satisfaction. In addition, a greater proportion of complications occurred with the Chrisman-Snook procedure.

- **Liu** showed that biomechanically, the modified Brostrom procedure was associated with less anterior talar displacement and a decreased talar-tilt angle compared with the Chrisman-Snook procedure.
Ankle instability hypothesis

- Only unstable ankles with ligament rupture (mechanical instability) require reconstruction

- Functional instability can be improved with arthroscopic treatment of the ankle

- Mechanical stability is not lost with isolated ATFL rupture
Role of MRI?

1. To determine the sensitivity and specificity of MRI diagnosis of lateral ligamentous injuries as confirmed by EUA and arthroscopy findings

2. To define the prevalence of peronei tendons injury that coexist with lateral ligamentous injury

3. To compare the occurrence rates of other associated pathologies found on MRI to that of arthroscopy finding
Ankle instability protocol (2004-)

- History-symptoms
- Clinical evaluation
- X-rays and MRI scan
- Evaluation under anesthesia
- Stress views in comparison with the normal ankle
- Arthroscopic confirmation & treatment
- Bostrom-Could reconstruction (CFL rupture)
Inclusion criteria

1) no history of generalized ligamentous laxity
2) no history of generalized neuromuscular disorders
3) no prior surgery of the contra-lateral ankle
4) an uninjured contra-lateral ankle
5) no history of previous fractures of the involved ankle
6) no prior surgery other than an anatomic reconstruction, tenodesis, revision surgery of the involved ankle or simple ankle arthroscopy by other surgeons
Patients (2004-2006)

- > 85 patients
- Average age 30 years (range 13-50 years)
- 50 ankles were injured during sport activities
- 35 ankles were damaged during military training
- Mean number of recurrent inversion injuries 2 (range 1-10)
- Mean duration of symptoms 38 months (range 6-168 months)

Clinical evaluation

Tegner activity level scale
AOFAS ankle score (preop, 3, 6, 12, 24 months)
Statistical analysis was performed using the SigmaStat software (SPSS Inc, Chicago, Ill, USA).

Data were analysed with a 1-way analysis of variance (ANOVA) and the Student’s t test.

Non-parametric 1-way analysis (Kruskal-Wallis) was also used for arbitrary distributions.

A p value less than 0.05 was considered statistically significant.
History – clinical examination

- Postural & gait changes
- Ankle instability
- Subtalar joint motion
- Midfoot motion
ATFL, CFL 20° plantarflexion
Peronei 20° plantarflexion + 20° inversion

Farook S, Sokoloff RM. *Foot Ankle Int*, 2002
EUA

- Anterior drawer test

- Lateral talar tilt test
Arthroscopy

- Functional instability
- Mechanical instability
Surgical technique
MRI findings

MRI has a high accuracy for ATFL injuries but low accuracy for CFL injuries.
Clinical results (mean follow up ~ 24 months)

Group A: Arthroscopy

Group B: A/copy + Bostrom-Could
Conclusions

- Our diagnostic and treatment algorithm for chronic ankle instability provides accurate evaluation of the deficient lateral ankle ligaments.

- This study, demonstrated the excellent outcome of the anatomic lateral ankle ligaments repair in a high demand population.

- The CFL ligament is the major restraint of lateral ankle instability and the pre-operative planning can be based on the integrity of this ligament.

- The associated intra-articular injuries may be a significant source of symptoms for this group of patients. Treatment of this associated pathology may provide excellent post-operative outcome.
Limitations

- Could the final outcome be the same no matter the group of patients that treatment would be applied?

- Is arthroscopy only a sufficient treatment for both functional and mechanical ankle instability?

- A double blind study must be performed in which both treatment methods should be applied for both types of chronic ankle instability (ethical restrictions?)
Expectations (research)

- The study will be completed (min. 3 years follow up) in 2008

- Preliminary results have already been presented in Hellenic Orthopaedic Association Meeting (Athens 2004), ESSKA 2006 Congress (Austria 2006) and Effort 2007 (Florence)

- Three papers are planned for submission to AJSM (Overall clinical study), Knee Surgery Sports Traumatology and Arthroscopy (role of CFL) and the Foot and Ankle Surgery (role of MRI)
Deficiencies of MRI in the diagnosis of chronic symptomatic lateral ankle ligament injuries

V. Kumar MRCS (Glasg), BTEC (sports)*, I. Triantafyllopoulos MD, A. Panagopoulos MD, S. Fitzgerald FRCR, L. van Niekerk FRCS, FRCS (Tr & Orth)

Centre for Sports Orthopaedics Surgery, Department of Orthopaedics, Friargate and Duchess of Kent Military Hospitals, North Yorkshire, United Kingdom

Received 22 November 2006; accepted 17 April 2007

Abstract

Background: Stress radiography and more recently magnetic resonance imaging have been used to study the integrity of lateral ankle ligaments in chronic symptomatic instability after injury.

Aim: Our aim was to see if magnetic resonance imaging was as good as examination under anaesthesia and stress radiography, for diagnosing injury to the lateral ankle ligaments.

Methodology: Fifty-eight patients, 47 men and 11 women, who were athletes or military personnel, with symptomatic instability of their ankle were included in the study. This cohort of patients had MRI scans, stress radiography and arthroscopy of their ankle. Integrity of the calcaneo-fibular ligament (CFL) was recorded arthroscopically. The sensitivity, specificity, positive and negative predictive value of MRI and
Results (N = 58 pt)

- 25 ATFL tears & 18 CFL tears.
- 7 isolated ATFL tears, no isolated CFL tears.
- 18 had both ATFL and CFL tears.
- 18 patients underwent reconstruction of CFL (Bröstrum)

<table>
<thead>
<tr>
<th>Lesions picked up</th>
<th>MRI</th>
<th>Arthroscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deltoid ligament lesion</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Syndesmotic lesion</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Peroneal tendon abnormalities</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cartilage lesions</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>Loose bodies</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Synovitis / hypertrophy</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Osteophytes</td>
<td>14</td>
<td>17</td>
</tr>
</tbody>
</table>
Results

Table 1: Comparison of MRI and EUA (arthroscopy as gold standard)

<table>
<thead>
<tr>
<th></th>
<th>MRI</th>
<th>EUA (+ stress radiographs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATFL †</td>
<td>Sensitivity</td>
<td>87% (CI 73-100)*</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>60% (CI 43-77)</td>
</tr>
<tr>
<td>CFL †</td>
<td>Sensitivity</td>
<td>47% (CI 23-71)</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>83% (CI 71-95)</td>
</tr>
</tbody>
</table>

* indicates 95% Confidence Intervals
† Anterior Talo-Fibular Ligament
‡ Calcaneo-fibular ligament

Table 2: Comparison of Accuracy of MRI and EUA

<table>
<thead>
<tr>
<th></th>
<th>MRI</th>
<th>EUA (stress radiographs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATFL †</td>
<td>71% (CI 59-83)*</td>
<td>88% (CI 79-96)</td>
</tr>
<tr>
<td>CFL †</td>
<td>72% (CI 61-84)</td>
<td>97% (CI 92-100)</td>
</tr>
</tbody>
</table>

* indicates 95% Confidence Intervals
† Anterior Talo-Fibular Ligament
‡ Calcaneo-fibular ligament
Results

Table 3: Comparison of predictive values of MRI and EUA

<table>
<thead>
<tr>
<th></th>
<th>MRI</th>
<th>EUA (Stress radiographs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATFL †</td>
<td>PPV 59% (CI 42-76)*</td>
<td>87% (CI 73-100)</td>
</tr>
<tr>
<td></td>
<td>NPV 88% (CI 74-100)</td>
<td>89% (CI 78-99)</td>
</tr>
<tr>
<td>CFL ‡</td>
<td>PPV 53% (CI 28-79)</td>
<td>94% (CI 83-100)</td>
</tr>
<tr>
<td></td>
<td>NPV 79% (CI 67-91)</td>
<td>98% (93-100)</td>
</tr>
</tbody>
</table>

* indicates 95% Confidence intervals
† Anterior Talo-Fibular Ligament
‡ Calcaneo-fibular ligament
PPV denotes Positive Predictive Value and NPV denotes Negative Predictive Value

Figure 1: Sensitivity of MRI and EUA for the Calcaneo-fibular ligament.

Figure 2: Specificity of MRI and EUA for the Calcaneo-fibular ligament.
Limitations

- Absence of control group without symptoms of instability
 (ethical issues regarding MRI and stress X rays in asymptomatic)

- No standardised measurements to measure mechanical ankle instability
 (Figures quoted in literature varied, hence comparison with normal side used)

- Absence of standardised stress apparatus

- MRI (static investigation) versus Stress radiographs (dynamic investigation)
 (reflects current practice)
Conclusion

- MRI has no distinct advantage over EUA & stress radiography in diagnosing chronic (grade 3) ligament deficiency.

- MRI useful to plan surgery by picking up associated lesions.

- Dynamic measurements such as dynamic MRI and MRI arthrogram may be more accurate in assessing integrity of ankle ligaments.

- EUA & Stress radiographs have excellent sensitivity, accuracy and predictive value in assessing integrity of the CFL.
THANK YOU